
s11nan Obje
t Serialization Framework for C++Version 1.1.xs11n-devel�lists.sour
eforge.net - http://s11n.netSeptember 29, 2005Abstra
tThis do
ument des
ribes s11n (and �s11nlite�), an obje
t serialization framework for C++, version 1.1.x�development/experimental� (whi
h will someday be
ome the 1.2.x �stable� tree). It serves as a supplementto the s11n API do
umentation and sour
e
ode, and is not a standalone treatment of the entire s11n library.Mu
h of this do
umentation
an be
onsidered �required reading� for those wanting to understand s11n'sfeatures, espe
ially its advan
ed ones.s11nlite, introdu
ed in s11n version 0.7.0, simpli�es the s11n interfa
e, providing the features that �most
lients need� for saving and loading arbitrary obje
ts. It also provides a referen
e implementation forimplementing similar
lient-side interfa
es. The author will go so far as to suggest, with un
hara
teristi
non-humbleness, that s11nlite's interfa
e ushers in the easiest-to-use, least
lient-intrusive, most �exiblegeneral-purpose obje
t serialization library ever
reated for C++.Users who wish to understand s11n are strongly en
ouraged to learn s11nlite before looking into therest of the library, as they will then be in a good position to understand the underlying ar
hite
ture andframework, whi
h is signi�
antly more abstra
t and detailed than s11nlite lets on. Users who think theyknow everything about serialization,
lass templates and
lassloaders are still en
ouraged to give s11nlite atry : they might just �nd that it's just too easy to not use!ACHTUNG #1: this is a �live� do
ument
overing an in-development software library. Ergo...it may very well
ontain some misleading or blatantly in
orre
t information! Please help us improve thedo
umentation by sumbitting your suggestions to our mailing list!ACHTUNG#2: the HTML version of this do
ument is KNOWNTO HAVE ERRORS introdu
edby the LYX-to-HTML
onversion pro
ess, su
h as arbitrarily missing text. Please
onsider reading a LYX orPDF
opy instead of an HTML
opy. HTML versions are released primarily as a
onvenien
e for web-
rawlingrobots, not all of whi
h
an read PDF.Do
ument CVS version info:$Id: s11n.lyx,v 1.14 2005/09/28 20:23:26 sgbeal Exp $Maintainer: stephan�s11n.net (list: s11n-devel�lists.sour
eforge.net)Contents1 Preliminaries 71.1 Li
ense . 71.2 Dis
laimers . 71.3 Feedba
k . 81.4 Credits . 92 Introdu
tion 102.1 S
ope of this do
ument . 112.2 s11n's Dream . 112.3 Main features . 122.4 Notable Caveats (IMPORTANT) . 142.5 WTF is s11nlite? . 152.5.1 Repeated warning: learn s11nlite �rst! . 152.6 Getting and installing s11n . 162.6.1 Building under GNU systems . 161

2.6.2 Building under Windows . 162.6.3 Compiling and linking s11n
lient appli
ations . 162.6.4 Building under Cygwin, Ma
 OS/X (Darwin), et
. 172.7 Version Compatibility . 172.8 Optional supplemental libraries . 173 Main di�eren
es between 1.0.x and 1.1/1.2 183.1 s11n mantra
hange . 183.2 Code
onsolidation and removal . 183.3 Fa
tory
ode reimplemented . 183.4 node_traits<>
hanges, s11n::data_node repla
ed with s11n::s11n_node 193.5 New header
onventions, faster
ompile times . 193.6 Fet
hing
lass names of Serializables . 203.7 Client-extendable s11nlite . 203.8 ~/.s11nlite
on�g �le removed . 213.9 Ex
eptions
onventions . 214 Core
on
epts 214.1 Terms and De�nitions . 214.2 The O�
ial Grossly Oversimpli�ed Overview of the s11n ar
hite
ture 244.3 Pro
ess Overview . 264.3.1 Serialization . 264.3.2 Deserialization . 264.4 Node Names and Property Key naming
onventions (IMPORTANT!) 274.5 Overview of things to understand about s11n . 274.6 Notes on error/su

ess values (i.e., justifying the bool) . 284.7 s11n and Patterns . 294.7.1 The
ore . 294.7.2 Classloader . 294.7.3 Proxies . 294.7.4 i/o . 294.7.5 s11nlite . 295 Serializable Interfa
es: overview and
onventions 295.1 Serialize Operator
onventions . 305.2 Deserialize Operator
onventions . 305.3 Data Node
lass names (IMPORTANT!) . 305.3.1 Example of setting a node's
lass name . 315.3.2 Using lo
al library support for
lass_name() . 325.4 Cooperating with other Serializable interfa
es . 325.5 Member template fun
tions as serialization operators . 336 Type Traits 336.1 s11n::node_traits<NodeType> . 336.2 s11n::s11n_traits<SerializableType> . 346.2.1
leanup_fun
tor . 346.3 type_traits<T> . 357 Five-minute intro: PODs and STL
ontainers 357.1 #in
lude ... 367.2 Saving . 367.3 Loading . 367.4 Now the really easy way: mi
ro_api<> . 372

8 How to turn JoeAverageClass into a Serializable... 378.1 Create a Serializable
lass . 388.2 Spe
ifying
ustom Serializable interfa
es for Interfa
eTypes . 388.3 Spe
ifying Serializer Proxy fun
tors . 399 How to turn JoeNonAverageClass into a Serializable... 409.1 JoeAverageClass<>
lass template . 419.1.1 A
leanup fun
tor . 4110 Doing things with Serializables 4210.1 Setting �simple� properties . 4210.2 Getting property values . 4210.2.1 Simple property error
he
king . 4310.2.2 Saving
ustom Streamable Types . 4310.3 Finding or adding
hild nodes to a node . 4310.4 Serializing Streamable Containers . 4410.4.1 Tri
k: �
asting� list or map types . 4410.5 De/serializing Serializable obje
ts . 4510.5.1 Individual Serializable obje
ts . 4510.5.2 Containers of Serializables . 4610.5.3 �Brute for
e� deserialization . 4611 Walk-throughs: imlementing Serializable
lasses 4711.1 Sample #1: Read this before trying to
ode a Serializable! . 4711.1.1 The data . 4711.1.2 The #in
ludes . 4711.1.3 The serialize operator . 4811.1.4 The deserialize operator . 4811.1.5 Serializable/proxy registration . 4911.1.6 Done! Your obje
t is now a Serializable Type! . 4911.2 Gary's
ode . 4911.2.1 Gary's Revelation . 5012 s11n registration & �superma
ros� (IMPORTANT) 5212.1 �Superma
ros� . 5212.2 General: Interfa
e Types . 5312.3 Choosing
lass names when registering . 5412.4 Registering Interfa
e Types supporting serialization operators . 5412.5 Registering types whi
h implement a
ustom Serializable interfa
e 5412.6 Registering Serializable Proxies . 5512.7 Where to invoke registration (IMPORTANT) . 5612.7.1 Hand-implementing the ma
ro
ode (IMPORTANT) . 5613 Proxies, fun
tors and algorithms 5613.1 Commonly-used Proxies . 5713.1.1 I/OStreamable types: s11n::streamable_type_serialization_proxy 5713.1.2 Arbitrary list/ve
tor types: s11n::list::list_serializable_proxy 5713.1.3 Streamable maps: s11n::map::streamable_map_serializable_proxy 5813.1.4 Arbitrary maps: s11n::map_serializable_proxy . 5813.1.5 Arbitrary pairs: s11n::map::pair_serializable_proxy 5813.2 Commonly-used algorithms, fun
tors and helpers . 5813.3 When proxies aren't desired . 5813.4 Fun
tor tags . 593

14 Data Formats (Serializers) 5914.1 General
onventions . 6014.1.1 File extensions . 6014.1.2 Indentation . 6014.1.3 Entity translation . 6014.1.4 Magi
 Cookies . 6114.2 Overview of available Serializers . 6114.2.1
ompa
t (aka, 51191011) . 6214.2.2 expatxml . 6214.2.3 funtxt (aka, SerialTree 1) . 6314.2.4 funxml (aka, SerialTree XML) . 6314.2.5 parens . 6414.2.6 simplexml . 6414.2.7 wesnoth . 6514.3 Tri
ks . 6514.3.1 Using a spe
i�
 Serializer . 6514.3.2 Sele
ting a Serializer
lass in s11nlite . 6614.3.3 Multiplexing Serializers . 6614.4 Internals: �ex's role in s11n . 6615
lass_name() and friends 6715.1 node_traits<T>::
lass_name() . 6715.2 s11n_traits<T>::
lass_name(
onst T *) . 6815.3 Class name of �unknown� . 6816 Ex
eptions
onventions 6916.1 The library throws when... 6916.2 Throwing from
lient-side de/ser operations . 7016.3 Errors and SerT * deserialize<NodeT,SerT>(
onst NodeT &) 7016.4 Ex
eptions and �external modules� . 7116.5 Spe
i�
 guarantees . 7116.6 Making your Serializables ex
eption-safe . 7217 SAM: Serialization API Marshaling layer 7317.1 The SAM layer & interfa
e . 7417.2 SAM's pla
e in the API
alling
hain (and other important notes) 7417.2.1 More about SAM<X*> . 7517.3 Histori
al
hanges . 7518 s11nlite spe
i�
s 7518.1 Why use s11nlite? . 7618.2
lient_api<NodeType> . 7618.3 File formats . 7718.4 Simple
on�g �les . 7718.5 mi
ro_api<SerializableType> . 7819 Memory management and obje
t relationships 7819.1 Data nodes . 7819.2 Containers of pointers . 7819.3 Cleaning up before deserialization . 7919.4 Cleaning up after failed deserialization . 804

19.4.1 Understanding the problem . 8019.4.2 A

omodating the problem, approa
h 1 (don't do this!) 8119.4.3 A

omodating the problem, approa
h 2 (do this instead!) 8119.5 Understanding �serialization ownership� . 8119.5.1 The basi

ase: obje
ts own their own resour
es . 8219.5.2 Serializing pointers to data we don't own . 8219.5.3 Two-way parent/
hild relationships . 8320 Using plugins 8420.1 Building plugins support . 8420.2 Win32 A
htung . 8420.3 The API . 8420.4 Basi
 Usage . 8521 s11n-related utilities 8621.1 s11n
onvert . 8621.2 s11nbrowser . 8622 Mis
ellaneous features and tri
ks 8622.1 Saving non-Serializables . 8622.2 Saving appli
ation-wide state and Singletons . 8722.3 Saving lib state plus arbitrary
lient-spe
i�ed state . 8922.4 �Casting� Serializables with s11n_
ast() . 8922.5 Cloning Serializables . 9022.6 Half-intrusive proxying and useless friends . 9022.7 zlib & bz2lib support . 9022.8 Using multiple data formats (Serializers) . 9122.9 Sharing Serializable data via the system
lipboard . 9122.10Containers of
onst obje
ts . 9222.11Versioning of s11n data . 9222.12Splitting up your output . 9322.13Improving
ompile times . 9322.14Know when you don't need to register a type to serialize it . 9422.14.1Containers of Streamable types . 9422.14.2Algos whi
h don't need the s11n
ore API . 9423 Mis
ellaneous
aveats, got
has, and some things worth knowing 9523.1 Serializing
lass templates . 9523.2 Cy
les and graphs . 9523.3 Thread Safety . 9523.4 Polymorphi
 types and template parameters . 9623.5 Absolute No-no's (Worst Pra
ti
es) for s11n[lite℄
lient
ode . 9623.5.1 Do not
hange the name of a passed-in data node! . 9723.5.2 Do not use a single Data Node for multiple purposes! . 9723.5.3 Do not re-assign a referen
e returned by s11n::
reate_
hild()! 9823.5.4 Do not use Serializers to implement
lassi
al i/ostream operator fun
tionality! 9823.5.5 Do not register a type as it's own proxy! . 9924 Fun
tional serialization 9924.1 #in
lude ... 9924.2 Example: serialize via std::for_ea
h() . 9924.3 Composing
ustom algorithms from fun
tors . 10124.4 Non-default-
onstru
ted proxies . 1015

25 Understanding the
osts of deploying s11n 10125.1 Learning
urve . 10225.2 Intrusivity (or not) . 10325.3 Compilation
osts . 10325.4 Memory/RAM
osts . 10425.5 Runtime speed: s11n and the �Big O Notation� . 10525.6 Code maintenan
e
osts . 10625.7 Money . 10626 Common problems 10726.1 Satan speaks through the
onsole during
ompilation . 10726.2 Containers serialize, but fail to deserialize . 10826.3 Abstra
t Interfa
e Types for Serializables . 10827 Evangelism 10827.1 Pointer/referen
e transparen
y for Serializables in the
ore API 10927.2 Container-based algos whi
h are pointer/referen
e-neutral . 10927.3 �Casting� between �similar� types . 11028 Comparing s11n and Boost::serialization 11128.1 Cans and
annots . 11128.2 Compiler and platform portability . 11228.3 Ar
hives vs Data Nodes . 11228.4 Non-intrusivity . 11328.5 Serialization of pointers . 11328.6 Data Versioning . 11428.7 API ease of use . 11528.8 Serialization Traits . 11628.9 E�
ien
y . 11628.10The interesting part is... 11728.11In
losing: s11n.net and Boost.org . 11729 Sour
e tree innards 11929.1 Build tree stru
ture . 11929.2 Header �le weirdness . 11929.3 Generated �les . 12029.4 Plugins . 12030 In Hindsight... 12130.1 The name �Data Node� . 12130.2 Patterns, formality, et
. 12130.3 Ex
eptions . 12130.4 Build tree and
ode layout
onsisten
y . 12231 Is this the end? 122Referen
es 126
6

1 Preliminaries1.1 Li
ense"You
annot guaranty freedom of spee
h and enfor
e
opyright law."Ian Clarke�This [do
ument℄ is en
rypted with ROT26 en
oding. De
oding it is in violation of the DigitalMillennium Copyright A
t.�Anonymous Software DeveloperThe library des
ribed herein, and this do
umentation, are released into the Publi
 Domain. Some ex
eptionallibrary
ode may fall under other li
enses su
h as BSD or MIT-style, as des
ribed in the README �le andtheir sour
e �les.All sour
e
ode in this proje
t has been
ustom-implemented, in whi
h
ase it is Publi
 Domain, or usessour
es/
lasses/libraries whi
h fall under LGPL, BSD, or other relatively non-restri
tive li
enses. It
ontainsno GPL
ode, despite it's �logi
al inheritan
e� from the GPL'd libFunUtil. Sour
e �les whi
h do not fall intothe Publi
 Domain are prominently marked as su
h, and in absolutely no
ases does this proje
t use li
enseswhi
h modify the li
ense of
ode linked against it.To be perfe
tly honest, i prefer, instead of Publi
 Domain, the phrase Do As You Damned Well Please. That'sexa
tly how i feel about sharing sour
e
ode.Whatever the li
ense, however, i will request that if you redistribute your own libraries based o� of this
ode,please do not use the same installed binary/library/header �lenames. For example, if you redistribute libs11n,please do not install the library as libs11n.so, nor the headers under <s11n.net/s11n/...>. Doing so willinherently
ompli
iate
ases where both of our
opies of s11n are used on the same systems.1.2 Dis
laimers�This information provided free of
harge for those willing to a

ept it. Others who wish to bespoon-fed may a
quire my servi
es at the dis
ounted rate of 235 Euro per hour or part thereof.�Anonymous Software DeveloperThe obligatory dis
laimers in
lude:1. This manual will make no sense whatsoever to most people. It is target at experien
ed C++ programmers(�intermediate level� and higher), and makes many assumptions about prior C++ knowledge.2. Don't let the size of this manual make you think that using s11n is di�
ult! Using s11n (espe
iallys11nlite) is simple and straightforward, even for non-guru C++
oders. It also has a number of �poweruser� features whi
h
an be exploited by those who truly understand the ar
hite
ture.3. There is admittedly a lot of hype and evangelism in this manual, but i personally believe it to all bejusti�ed.4. s11n is
ontinually under development and is
onstantly being tweaked. The basi
 model it is based onhas proven to be inordinately e�e
tive and low-maintenan
e sin
e it was introdu
ed in the QUB proje
t(qub.sour
eforge.net) by Rusty �Bozo� Ballinger in the summer of 2000. This implementation re�nes thatmodel, vastly expanding its
apabilities.5. This software and do
umentation are PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.6. Reading dis
laimers makes you go blind. ;)7. Writing them is even worse. :/8. This list of dis
laimers might not
ontain all the ne
essary dis
laimers.7

And, �nally:This library is developed in my private time and the domain and web site are funded by myself. With that inmind: unless i am kept employed, this proje
t may �blink out� at any time. That said, this parti
ular proje
tholds a spe
ial pla
e in my heart (obviously, or you wouldn't be seeing this manual and all this
ode), so itoften does get a somewhat higher priority than, e.g. dinner or lun
h. Should you feel
ompelled to
ontribute�nan
ially to this proje
t, please do so via the donation program hosted by Sour
eForge and PayPal:https://sour
eforge.net/donate/index.php?group_id=104450Donations will go toward keeping the web site online and the domain name registered, and potentially to
overinternet a

ess fees. If anyone is interested in providing a grant to this proje
t, please
onta
t us dire
tly. Wewould be thrilled. Of
ourse, non-�nan
ial
ontributions, e.g.
ode, do
umentation, and bug reports, are of
ourse also wel
omed.1.3 Feedba
k"Like a Kenny Loggins re
ord, no one's ever gonna hear ya."Bloodhound GangThe s11n proje
t's home page is:http://s11n.net/The author is stephan beal (stephan�s11n.net). Feel free to
onta
t me dire
tly, but i would ask that questionsabout the library be dire
ted to our development mailing list:s11n-devel�lists.sour
eforge.netYou do not need to subs
ribe to the list in order to post there.By all means, please feel free to submit feedba
k on this manual and the library: positive, negative, whatever...as long as it's
onstru
tive it is always happily re
eived. While few who know me would say that i am a pedanti
person, i am extremely pedanti
 when it
omes to do
umenting software: if you �nd any errors or gaping holesin these do
s, please point them out!If this gives you any idea of how seriously feedba
k is taken:
• The whole 0.7.0 rewrite, and the abstra
tions and simpli�
ations whi
h grew out of it, were triggeredby Ton Oguara's feedba
k about his problems serializing
lass templates. That is indeed a de
eptivelytri
ky problem, and the older
ode
ould only handle non-trivial
ases with a non-trivial amount of
odegeneration. The 0.7 framework
an do this with �relative� ease, and 0.8+ makes it trivial in many
ases.
• This parti
ular do
ument (the one you're reading now), was largely inspired by Gary Boone's feedba
kon the di�
ulties of getting started with s11n. Also, the
hanges in the registration pro
esses from 0.7xto 0.8 were inspired by Gary.
• s11nlite was developed largely be
ause of Ton's and Gary's feedba
k.
• The massive build tree re-orgs between 0.8.x and 0.9.x were inspired by the Debian Proje
t's martin f.kra�t (yes, he prefers it spelled lower-
ase).The
onta
t address, should you also feel
ompelled to write what you really think about s11n, is at the top ofthis do
ument.Now, i
an't promise to rewrite everything every time someone wants a
hange, but all input is
ertainly
onsidered. :)Whatever it is you're trying to save, s11n wants to help you save it, and goes through great pains to do somede
eptively di�
ult tri
ks to simplify this pro
ess as mu
h as pra
ti
ally possible. If it
an't do so for your
ases, then please
onsider helping us
hange s11n to make it
apable of doing what you'd like it to. It is my�rm belief that the
ore s11n framework
an, with very little modi�
ation, save anything. What is
urrentlymissing are the algorithms whi
h may further simplify the whole pro
ess, but only usage and experimentationwill reveal what that toolkit needs to look like. If you
ome a
ross some great ideas, please share them with us!:) 8

1.4 Credits"It's a thankless job, but I've got a lot of Karma to burn o�."Anonymous Software DeveloperThere is no single,
omplete list of all people who have in�uen
ed this proje
t. A partial list, in no parti
ularorder:(If i have left you o� of the list, please let me know!)
• My mother and step-father Bonnie & David Pi
kartz, my father and step-mother Joseph & GailHudgins, my step-mother-by-adoption Kathy Beal, and my belated adopted dad, Gerry Beal1. Theyjust all need to be thanked in general. The 0.9.x bran
h, from 0.9.4 to 1.0.0, was dire
tly funded by verygra
ious donation from the Pi
kartz family.
• Rusty �Bozo� Ballinger wrote the
on
eptual forefather of s11n (http://libfunutil.sour
eforge.net).(Rusty, if you're still out there, get in tou
h!) As far as i know, Rusty also
oined the phrase �s11n� as ashort form of �serialization�, whi
h i then stole as a domain name.
• Ton Oguara a

identally inspired the whole 0.6 �> 0.7 rewrite/refa
tor by showing me how mu
h
lient-side e�ort was really needed to de/serialize
lass templates.
• Gary Boone provided valuable feedba
k on a range of do
umentation and features, parti
ularly onmaking it easier for developers to get started with s11n. Many of the 0.8.x improvements exist be
ause ofGary's feedba
k. Gary also is
redited with
oming up with a useful naming
onvention for SerializationProxies, MyType_s11n (a
onvention i use in many of my proje
t).
• Roger Leigh provided the information needed to add libltdl support to the
lassloader.
• Tom, from
omp.lang.
++, provided an interesting �x for an �interfa
e annoyan
e� in the
lassloader. Itis still used to this day in registering
lass fa
tories.
• martin f. kra�t, of the Debian Proje
t, put in a great deal of e�ort to get the 0.8.x series into theDebian, and was the driving for
e behind the 0.8.x �> 0.9.x sour
e tree re-orgs. His
ontinued feedba
kis always insightful.
• Marshall Cline, of C++ FAQ fame, helped to
orre
t some of the errors in the do
umentation re-garding
y
les, joins and trees. His FAQ has a great se
tion on the topi
 of serialization in C++:http://www.parashift.
om/
++-faq-lite/
• Robert Ramey, author of the Boost serialization library (http://www.rrsd.
om), for several insightfulemail
onversations on the topi
 of serialization. His well-
rafted library is
ompared to this one (we mighteven say praised) in some detail in se
tion 28.
• Steve Madere suggested adding unit tests to the sour
e tree, and within an hour of doing so 2 signi�
antbugs were
aught and �xed. He also made a �nan
ial
ontribution via the Sour
eForge/PayPal donationsystem.
• Andreas Jo
hens provided several pat
hes for
ompiling the 0.8.x tree under g

 3.4.
• Mike Radford provided more pat
hes for g

 3.4 and gave me ssh to his box to let me �x a
ouple more.
• Patri
k Lin demonstrated and helped lo
alize a long-standing
ontainer-of-
ontainers deserializationbug-in-waiting whi
h
ouldn't wait any longer on his ma
hine (existed from 0.8.x until 0.9.17).
• Keven Weber helped tra
k down a
ouple bugs by allowing me ssh a

ess into his ma
hine, where thebugs were appearing.
• Christian Pro
hnow, proje
t lead of P::Classes (http://p
lasses.
om), allows me to integrate s11nsupport into P::Classes 2.x. The port provides a great opportunity for bug �nding and
leanups.
• Dr. Mar
 Duerner, �rst for inviting me to p
lasses.
om and se
ondly for his
ontinued and on-goingfeedba
k and ha
king sessions.1i've got 8 brothers and 4 sisters. Yes, i a
tually do know all of their names: (in no parti
ular order) Toby, Gerald, Ty, Trevor,Teven, Wayne, Wesley, David, Margorie, Melisa, Ashley and Cindy (though i've never a
tually met Cindy). Their birthdays? Err....??? 9

• Gregor Jehle, also of p
lasses.
om, reported
ompile problems on AMD64 and allowed me ssh a

ess tohis box to tra
k down and �x them.
• Ashran, author of the Ha
kersquest Everquest(tm) emulator (http://ha
kersquest.org), was the �rstto
ompile s11n under Windows.
• Peter �What's Happ'nin' !!?!!?!?!� Angerani, my long-time friend and mentor, for his
ontinuedsupport and feedba
k.
• To my esteemed Unix-loving
olleagues, Ralf Lehmann andMartin Tessun, for agreeing, after bribingthem with their own personal Easter Egg in this do
ument, to look over this manual for me. (Hier isteuer Easter Egg, Jungs!!!)
• Sour
eForge (http://sour
eforge.net) has been hosting my
ode sin
e 2000, and without them s11nwould have neither mailing lists, a bug tra
king site, nor a publi
 CVS tree. i en
ourage all users ofSour
eForge to support their servi
e by buying a yearly subs
ription to their site.Various published authors have, rather unknowingly, had profound impa
ts on various design de
isions durings11n's evolution:
• S
ott Meyers - a huge per
entage of my
ode is in�uen
ed by S
ott's always-pra
ti
al advi
e. All of hisbooks must be on any C++
oder's bookshelf. Here's your biggest fan, S
ott!
• Andrei Alexandres
u - his Modern C++ Design was the ne
essary
atalyst i needed for realizing the
lassloader implementation, and provided the basis for the internals of the phoenix::phoenix<>
lass,whi
h is used extensively by s11n.
• Herb Sutter - A
ouple of his (very numerous) arti
les have led to dire
t
hanges in this library. e.g. abreaking-down of some of the member-based interfa
es into free fun
tions was inspired by his �What's ina
lass?� arti
le.
• Stephen Dewhurst, author of C++ Got
has : every time i write �template
lass� and
orre
t it to �
lasstemplate�, or
hange the word �method� to �fun
tion�, i think of Stephen. ;) If i re
all
orre
tly, Stephenalso introdu
ed me to the idea of Monostates, whi
h are
on
eptually similar to what i've been
alling�Context Singletons.�
• C++ Templates: The Complete Guide, by Ni
olai M. Josuttis and David Vandevoorde, as well asJosuttis' The C++ Standard Library, were instrumental in implementing mu
h of the template
ode usedby this library. The latter is always the �rst book i rea
h for when i've got a question about the STL, and99% of the time it has the answer2.i try to keep keep the list of
ontributors up-to-date via an RSS feed:http://s11n.net/rss/s11n-
ontributors.xml2 Introdu
tionSo you want to save some obje
ts? Strings and PODs3? Arbitrary obje
ts you've written? A FooObje
t orstd::map<int,std::string> or std::list<MyType*>?What?!?! You've got a:std::map< int, std::list< std::map< double, FooObje
t<X *> * > > 4?!?!?Null problemo, amigo :2i say 99% be
ause i generally mistrust statements whi
h in
lude a �100%� quali�er, but the truth is i
an't remember a timewhen this book didn't have what i was looking for.3Plain Old Data types, su
h as int,
har, bool, double, et
.4The only [remaining℄ inherently di�
ult part for this one is getting the proper type names for ea
h
omponent of the
ontainerheirar
hy! This problem dis
ussed at length in this do
umentation, the s11n sour
es, and the
lass_loader library manual. It's notas straightforward as it may seem. Interestingly, for many
ases (non-polymorphi
 types) we
an a
tually get by without knowingthe type's name. 10

s11n is here toSave Our Data , man!Histori
ally speaking, saving and loading data stru
tures, even relatively simple ones, is a de
eptively thornyproblem in a language like C++, and many
oders have spent a great deal of time writing
ode to serialize anddeserialize (i.e., save and load) their data. The s11n framework aims (rather ambitiously) to
ompletely endthose days of drudgery.s11n , a short form of the word �serialization�5, is a library for serializing... well, just about any data stu
turewhi
h
an be
oded up in C++. It uses modern C++ te
hniques, unavailable only a few years ago, to providea �exible, fairly non-intrusive, maintenan
e-light, and modern serialization framework... for a programminglanguage whi
h sorely needs one! s11n is parti
ularly well-suited to proje
ts where data is stru
tured as hier-ar
hies or
ontainers of obje
ts and/or PODs, and provides unpre
edentedly simple save/load features for mostSTL-style
ontainers, pretty mu
h regardless of their stored types.In pra
ti
e, s11n has far ex
eeded it's original expe
tations, requirements and goals, and it is hoped that moreand more C++ users
an �nd relief from Serialization Hell right at home in C++... via s11n.A brief history of the proje
t and a des
ription of its main goals are available at:http://s11n.net/history.php2.1 S
ope of this do
umentOriginally, this do
ument set out to provide a qui
k-start guide to using the library's main features. Over timeit has evolved to
over nearly every aspe
t of the library. Between this manual, the API do
umentation, and thesample
ode provided with the library, pretty mu
h all of your questions about the library should be answered.If not, feel free to email us with your questions.As always, the sour
es are the de�nitive pla
e for information. That said, i'm a �rm believer that developersshould not have to read the sour
es in order to be able to use a library, so there is an absurd amount ofdo
umentation.2.2 s11n's DreamAnyone who has had to hand-
ode save and load support for their data, even if only for relatively trivial
ontainers and data types (e.g. even non-trivial strings), will almost
ertainly agree with the following statement:Saving data is relatively easy. Loading data, espe
ially via a generi
interfa
e, ismind-numbingly, ass-ki
kingly di�
ult!The te
hni
al
hallenges involved in loading even relatively trivial data, espe
ially trying to do so in a uni�ed,generi
 manner, are downright frigging s
ary. Some people get their do
torates trying to solve this type ofproblem6. Complete bran
hes of
omputer s
ien
e, and hoardes of
omputer s
ientists, students, and a
olytesalike, have resear
hed these types of problems for pra
ti
ally eons. Indeed, their e�orts have provided us anumber of
riti
al
omponents to aid us on our way in �nding the Holy Grail of serialization in C++...In the 1980's IOStreams, the prede
essor of the
urrent STL iostreams ar
hite
ture, brought us, the C/C++development
ommunity, tremendous steps forward,
ompared to the days of reading data using
lassi
al brute-for
e te
hniques, su
h as those provided by standard C libraries7. That model has evolved further and further,and is now an instrumental part of almost any C++
ode8. However, the pra
ti
e of dire
tly manipulating datavia streams is showing its age. Su
h an approa
h is, more often than not, not suitable for use with the
ommonhigher-level abstra
tions developers have
ome to work with over the past de
ade (for example, what does itreally mean, semanti
ally speaking, to send a UI widget to an output stream?).In the mid-1990's HTML be
ome a world-wide-wonder, and XML, a more general variant from same family ofmeta-languages HTML evolved from, SGML9, leapt into the limelite. Prati
ally overnight, XML evolved intothe generi
 platform for data ex
hange and, perhaps even more signi�
antly, data
onversion. XML is here5�s11n� was
oined by Rusty Ballinger in mid-2003, as far as i am aware. It follows the tradition set by �i18n�, whi
h is shortfor �internationalization� - the number represents the number of letters removed from the middle of the word.6But all i got was this library manual. ;)7That was all well before my time, but i read a lot of C++ books. ;)8Are you going to tell me you never use std::
out and std::
err? Yeah, right. Tell it to your grandma - maybe she'll believe you.9[Standard,Stru
tured℄ Generi
 Markup Language 11

to stay, and i'm a tremendous fan of XML, but XML's era has left an even more important lega
y than theelegan
e of XML itself:More abstra
tly, and more fundamentally, the popularity and �well-understoodedness� of XML has greatlyhightened our
olle
tive understanding of abstra
t data stru
tures, e.g. DOMs [Do
ument Obje
t Models℄,and our understanding of the general needs of data serialization frameworks. These points should be neitheroverlooked nor underestimated!What time is it now? 2004 already? It looks like we're ready for another 10-year
y
le to begin...We're in the 21st
entury now. In languages like Java(tm) and C# serialization operations are basi
ally built-in10. Generi

lassloading, as well, is EASY in those languages. Far, far away from Javaland, the problemdomain of loading and saving data has terri�ed C++ developers for a full generation!s11n aims, rather ambitiously, to put an end to that. The whole general problem of serialization is a veryinteresting problem to me, on a personal level. It fas
inates me, and s11n's design is a dire
t result of theenergy i have put into trying to rid the C++ world of this problem for good.Well, okay, i didn't honestly do it to save the world['s data℄:i want to save my obje
ts!That's my dream...Oh, my - what a
oin
iden
e, indeed...That's s11n's dream, too...s11n is a
tively exploring viable, in-language C++ routes to �nd, then take, the C++
ommunity's next majorevolutionary step in general-purpose obje
t serialization... all right at home in ISO-standard C++. Thisproje
t takes the learnings of XML, DOMs, streams, fun
tors,
lass templates (and spe
ializations), Meyers,Alexandres
u, Strousup, Sutter, Dewhurst, PHP, �Gamma, et al�,
omp.lang.
++, appli
ation frameworks,Java11, and... even lowly ol' me (yeah, i'm the poor bastard who's been pursuing this problem for 3+ years ;),and attempts to
reate a uni�ed, generi
 framework for saving... well, damned near anything. A
tually, savingdata is the easy part, so we've gone ahead and thrown in loading support as an added bonus ;).In short, s11n is attempting to apply the learning of an entire generation of software developers and ar
hite
ts,building upon of the streets they
arved for us... through the sili
on... armed only with their bare text editorsand the sour
e
ode for their C
ompilers. These guys have my utmost respe
t. Yeah, okay... even the oneswho
hose to use (or implement!) vi. ;)Though s11n is quite young, it has a years-long �
on
eptual history�12, and its
apabilities far, far ex
eed anyoriginal plans i had for it. Truth be told, i use it in all of my C++
ode. i
an �nally... �nally, FINALLYSAVE MY OBJECTS!!!!i hope you will now join me in s
reaming, in the loudest possible volume:It's about damned time!!!2.3 Main features"I don't make my mistakes more than on
e. I store them
arefully and after some time I take themout again, add some new features and reuse them."Anonymous Software DeveloperFor the most part, the features list is the same as for s11n 1.0.x. For those of you who haven't used 1.0.x, thelibrary's primary features and points-of-interest are:
• Quite possibly the most �exible and easiest-to-use C++ serialization framework in the known universe.1310Though i do have very deep fundamental di�eren
es with Java's built-in serialization model!11In
identally, not C#: s11n was started before i ever tou
hed C#. In all honesty, i �nd C#'s
ore model to be inferior to s11n,at least in terms of it's
lient-side interfa
e. For example, it really bugs me that in C# (or any other serialization framework), the
lient must know something so basi
 as what �le format their data is stored in. i say (and s11n says): only a �le's i/o parsers really
are what format a �le is in.12Utility-
lass
oding, and lots of design thought, started in early 2001. The �real
oding� began in September, 2003, on
e i�nally
ra
ked the se
rets i needed to implement the
lassloader.13On a features/te
hni
al level, the only
urrently-existing C++ serialization framework whi
h
an even begin to
ompare withs11n is Dr. Robert Ramey's Boost serialization lib, available via http://www.boost.org. For a
omparison of Boost and thislibrary, see se
tion 28. 12

• Provides
lient
ode with easy de/serialization of arbitrary streamable types and user-de�ned Serializabletypes.
• Out of the box it supports all standard STL
ontainers: std::list, ve
tor, set, multiset, map, multimapand valarray.14
• Lends itself well to a large number of uses, from de/serializing arbitrary ve
tors or maps of data (a-la
on�g �les) to saving whole appli
ations in one go.
• Does not tie
lients to a spe
i�
 Serializable interfa
e/heirar
hy. The internally-used interfa
es
an beeasily dire
ted to use
lient-spe
i�
 interfa
es, whi
h need not even be virtual. This means that thelibrary's interfa
e
an be made to
onform to
lient-side obje
ts' needs, as opposed to the other wayaround.
• Serializable Proxying allows
lients to atta
h proxy
lasses to arbitrary types, su
h that the proxy typeis delegated all de/serialization operations. The end result is that it is possible to serialize a given typewithout having to tou
h a line of that type's
ode, nor does that type have to know it's playing along.
• Advan
ed te
hniques allow
lient
ode to
ompletely reimplement/repla
e most of the library's underlyinglayers with their own - without tou
hing the s11n
ode. For example,
lass fa
tories or even the
lient-to-
ore API translation layer
an be repla
ed by providing
ertain
lass template spe
ializations.
• Integration into existing
lass hierar
hies is straightforward, qui
k, relatively painless, and
an often bein
rementally applied to subsets of a proje
t over time, as needed, as opposed to for
ing a
lient to
ompletely refa
tor. In fa
t, using proxies means
lient
lasses don't normally have to
hange at all to betransformed into �True Serializables.�
• The data persisten
e model inherently does not su�er (as, e.g. Java's does) from the problem of invalidatingserialized data every time an internal
hange is made to a Serializable data type. It's �stru
ture-and-properties�-based system ensures that lega
y data do not be
ome invalid until developers15 want them tobe
ome so.
• It sports
ompile-time type-safe
lassloading without the use of a single type-
ast (neither in the
lient norin the library). The
lassloader is fa
tory-based, and
an load just about any
lasses, in
luding 3rd-party
lasses, without them knowing they are parti
ipating. Transparently loading new types from DLLs issupported if available on your platform.
• The API is 100% data-format agnosti
 and pla
es no �le naming
onventions
lient data �les. Several (err...many) di�erent data format handlers
urrently exist, and adding
ustom Serializers is fairly painless: allyou need is an input parser and an output formatter16. As of this writing (April 2005) s11n 1.0 has seven�le-based formats, in
luding three XML diale
ts, one MySQL-powered �format�, and experimental add-onsupport for ftp/http whi
h works with arbitrary �le-based formats. That is, as far as i am aware, moreformats than any existing serialization library, regardless of implementation language. Why so many?Mainly just to show that it
an be done ;).
• Does not impose any spe
ial �lename
onventions or restri
tions on
lients17. That is, if you want to
allyour saved data MyData.do
, go right ahead.
• All
lients of s11nlite may share serialized data between themselves, regardless of their underlying
lientserialization interfa
es. If their APIs
an see ea
h others' fa
tories then they
an also transparently fullydeserialize ea
h others' data.
• Optional
lient-transparent zlib and bz2lib �le de/
ompression, for 60-95% �le size redu
tion. Whenenabled, de/
ompression happens transparently - usage of s11n does not
hange one iota.
• The i/o sub-framework is stream-
entri
, not �le-
entri
. This sub-module is e�e
tively optional:
lientsare not required to use any of the supplied i/o
ode, but must then supply their own Serializers (i/ohandlers, whi
h need not use streams, but
ould use a relational database or any other ba
k-end).14Reminder: std::queue, deque and sta
k are not stri
tly
ontainers - the are
ontainer adapters. The unusual traversalrequirements of queues and sta
ks make them di�
ult to serialize e�
iently.15Or, admitedly, the all-powerful Marketing Dire
tor.16A new Serializer
an be implemented in under an hour if one has related Serializer or parser
ode to start from, and
an normalybe done in as little as a few hours even when writing from s
rat
h. The real e�ort is normally in writing the input parser: the onlyspe
ial
onsideration normally needed is the es
aping of, e.g. strings (this is format-dependent).17It might be limited by your underlying �lesystem or STL, e.g. in regards to Uni
ode. s11n has no spe
ial support for Uni
ode,relying on std::string for all string operations. 13

• The primary data stru
tures follow STL [Standard Template Library℄
onventions and are
ontainer/fun
tor/algorithm-
entri
, thus many generi
 algorithms
an be easily applied to them. The library
omes with several usefulfun
tors and algorithms for working with serialized data. This also allows
omplete separation betweenthe pro
esses of the state storing/restoration and any resulting i/o.
• Uses only ISO-standard C++
onstru
ts, no
ompiler-spe
i�
 extensions.
• Allows
lients
omplete
ontrol over how an obje
t is serialized: s11n makes no assumptions about whatyou want, it only tries (very hard) to help you meet your data persistan
e needs. That said, s11n
an betold how to serialize many
omplex obje
t types with very little instru
tion, so
lients need not normallydo very mu
h work.
• It
omes with an absurd amount of do
umentation, in the form of this do
ument, the API do
s, and theweb site.Okay, okay, we'll stop there! ;) (The list really does go on!)2.4 Notable Caveats (IMPORTANT)It would be dishonest (even if only mildly so ;) to say that s11n is a magi
 bullet - the solution to all obje
tserialization needs. Below is a list of
urrently-known major
aveats whi
h must be understood by potentialusers, as these are type types of
aveats whi
h may prove to be deal-breakers for potential s11n users. Mu
hmore detailed information and spe
ulation about the overall
lient-side
osts of deploying s11n-based
ode
anbe found in se
tion 25.
• As it is heavily based on
lass templates, it is implemented largely as inlined
ode in header �les (for
omplex linking reasons). The end e�e
t on
lients is that
ompilation times and obje
t/binary �le sizesdo su�er. (One user reports that
ompile times in
rease by as mu
h as 14 times when building withlibs11n 0.8.x, but this has been
ut drasti
ally sin
e his report.) Some
ode is in implementation �les, so
lients must still link to the s11n library, just as they would for any typi
al C/C++ library.
• Due largely to the side-e�e
ts of heavy relian
e on
lass templates, s11n is unsuitable for systems withvery limited �lesystem spa
e or main memory (e.g. embedded systems, handheld
omputers, et
.).
• s11n, at it's
ore,
an be quite di�
ult to grasp. It's not the details whi
h are di�
ult for most people,i think, but the fa
t that the details are hidden behind very abstra
t �
onventions� and �
lose approxi-mations�. Using the s11nlite interfa
e will
ompletely eliminate most potential �startup problems� whengetting used to this library. What is s11nlite? See se
tion 2.5.
• s11n
an serialize, but not deserialize,
lasses
ontaining referen
es. There are workarounds, but theyrequire modifying su
h
lasses to internally hold a pointer instead of a referen
e, making them default
ontstru
tble, and maybe other minor
hanges.
• The supplied build tree will only run on GNU-based systems. That is, systems running all the
ommonGNU tools like make, GNU bash, and other ex
eedingly
ommon Open Sour
e tools, like perl. That said,the
ode itself should be easily portable to other build systems, so long as those hosts support appropriate
ompilers (see below). We will gladly host build-related �les for other platforms or build environments(e.g. GNU Autotools, Mi
rosoft environments, et
.) in the distribution and/or web site, should userssubmit those.
• Requires a relatively re
ent, ISO-
onformant C++
ompiler with ex
ellent support for
lass templates.Only known to work with GCC 3.2x - 3.4.x, and known to NOT work with GCC 2.9x. On Win32platforms, as of version 1.1.2 it is known to build under MSVC 2003 and 2005.
• s11n is untested with serializing binary data. It �should be possible�, but implementing it in terms of the
urrent Serializers (e.g. as string-en
oding
onversions like base64) would be rather ine�
ient, i think(even moreso than s11n's normal te
hniques, i mean). That said, any data whi
h
an ultimately berepresented as a one or more std::string obje
ts and
an be stru
tured in a DOM-like fashion (even ifonly via transformation) should pose no problems at all for s11n. (We avoid binary formats so that we
an evade the problems related to ma
hine endianness.)
• The library
urrently has no algorithms for saving graphs - that is, stru
tures with joins. This
an andhas been done in s11n, but no generi
 algorithms are (yet) provided for doing so. For more informationsee se
tion 23.2. 14

• s11n is untested in multi-threaded environments. See se
tion 23.3 for more details and spe
ulation.
• It is driven with Generi
 Programming and reusability/maintability in mind, not High-performan
e Com-puting, and thus it may not be performant enough for proje
ts whi
h need, really, really fast
ode. (Thatsaid, s11n is a

eptably fast for all uses i've had for it. Try it out and make your own judgement.) Itsgeneral model inherently at-least-linear (or even worse), as dis
ussed in more detail in se
tion 25.5.
• s11n's development is primarily steered by my hobbies and my
lient-side needs, and is
onstantly underexperimentation.
• When stati
ally linking against libs11n, dynami
 loading of DLLs will not work. i am not sure why. Thusthe build pro
ess for libs11n builds no stati
 libraries.2.5 WTF is s11nlite?(WTF is a te
hni
al term used very often by I.T. personnel of all types. It is short for �What the foo?!? �)s11nlite is a �light-weight� s11n sub-interfa
e written on top of the s11n
ore and distributed with it. Itprovides �what most
lients need for serialization� while hiding many of the details of the �raw�
ore libraryfrom the
lient (trust me - you want this!). Overall it is signi�
antly simpler to use and, as it is 100%
ompatiblewith the
ore, it still has a

ess to the full power �under the hood� if needed. s11nlite also o�ers a potentialstarting point for
lients wishing to implement their own serialization interfa
es on top of the s11n
ore. Su
han approa
h
an free most of a proje
t's
ode from dire
t dependen
ies s11n by hiding serialization behind aninterfa
e whi
h is more suitable to the proje
t. (Su
h extensions are beyond the s
ope of the do
ument, butfeel free to
onta
t the development list if you're interested in su
h an option, and we'll help you out.)Histori
ally, the s11n ar
hite
ture has been signi�
antly refa
tored three times, and it has evolved to be moreand more useful with ea
h iteration. This parti
ular iteration is light years ahead of it's prede
essors, in termsof power and �exibility, and is also mu
h simpler to work with and extend than earlier ar
hite
tures.Users new to s11n are strongly en
ouraged to learn to use the
ode in the s11nlite namespa
e before lookinginto the rest of the library. Doing so will put the
oder in a good position to understand the underlying s11nar
hite
ture later on. Users who think they know everything are still en
ouraged to give s11nlite a try: theymight just �nd that it's just too easy to not use! Don't let the 'lite' in the name s11nlite fool you: it's only
alled s11nlite be
ause it's a subset (but a fun
tionally
omplete one) of an even more powerful, more abstra
tedlayer known as �the s11n
ore� or �
ore s11n.�2.5.1 Repeated warning: learn s11nlite �rst!We'll say this again be
ause people don't seem to want to believe it...i wrote s11nlite be
ause i, the author of s11n, found s11n's
ore �too detailed� for
lient-side use. i like thegeneral
ore model, but it is
umbersome to use dire
tly, due to the many pla
es where template parametertypes must be spe
i�ed. So i got tired of dealing with it and sought out a Simpler Way of Doing Things. Thatis what s11nlite is all about.If you think i'm kidding about learning s11nlite �rst, take a look at this note from s11n user Paul Balomiri18:"I didn't trust you on the point about understanding s11lite �rst (don't ask why, it was a mistakeanyway)."That is, for the vast majority of
ases, s11nlite provides everything
lients need as far as using s11n goes, andhas a notably simpler interfa
e than the
ore library. s11nlite,
ombined with the various generi
 serializationalgorithms shipped with s11n (e.g. in listish.hpp and mapish.hpp), provide a
omplete interfa
e into theframework.Another point to
onsider: in
lient-side
ode i (s11n's author) generally use s11nlite and the generi
 al-gos/proxies, and rarely dip down into the
ore, nor do i deal with the Serializer interfa
e from
lient
ode.Thus, i
an assure you - a potential s11n
lient - that s11nlite
an do almost anything you'd want to do withthis library, and is signi�
antly easier to work with than the
ore interfa
e is.If you still don't believe me, please re-read this se
tion until you do.18As of this writing, Paul uses s11n 1.0.x for some massive data sets: 10 million data points des
ribing the whole street networkof Vienna, Austria. :) 15

2.6 Getting and installing s11n"Linux su
ks twi
e as fast and 10 times more reliably, and sin
e you have the sour
e, it's your fault.�Anonymous Software Developers11n
an be downloaded from:http://s11n.net/download/2.6.1 Building under GNU systemsThe build tree shipped with the main sour
e tree is GNU-
entri
, be
ause i happen to use GNU tools. Buildingit on systems whi
h do not host GNU tools (g

, make, bash, et
.) will require
reating
ustom build
ontrol�les (proje
t �les, make�les, or whatever).To build the library, use the
onventional approa
h:./
onfigure [--options ...℄makemake installThe most
ommon option passed to
on�gure is --prefix=/some/path, whi
h de�nes the top-level path forinstalling the library. If you do not have admin rights on the ma
hine, i suggest using --prefix=$HOME, andadding $HOME/lib to your LD_LIBRARY_PATH.Pass --help to
on�gure for a list of more options.2.6.2 Building under Windows"People say it is hard to swit
h from Windows to UNIX; sure: but it is impossible to swit
h fromUNIX to Windows!"Anonymous Software DeveloperAs of version 1.1.2, s11n is known to
ompile under at least a
ouple variants of MS Dev Studio. This requiresa separate sour
e distribution and may require some manual tweaks to the build. For full instru
tions see the�le named README.WIN32, whi
h
omes with the sour
e distribution.2.6.3 Compiling and linking s11n
lient appli
ationsOn Unix systems, use the libs11n-
onfig s
ript, installed under PREFIX/bin, to get information about yourlibs11n installation. This in
ludes
ompiler and linker �ags
lients should use when building with s11n. It may(or may not) be interesting to know that libs11n-
onfig is
reated by the
on�gure pro
ess, so if you haveused a build pro
ess other than the one shipped with the library, you may not have this s
ript, or may need togenerate it by hand.When linking
lient binaries and shared libraries on Unix systems, you must use the -rdynami
 (or equivalent)linker option. If you do not, fa
tory registrations will not work (they will never happen) and deserialization ofpointer types will therefor fail. This is unforuntate, but true.As with all Unix binaries whi
h link to dynami
ally-loaded libraries,
lients of libs11n must be able to �ndthe library. On most Unix-like systems this is a

omplished by adding the dire
tory
ontaining the libs to theLD_LIBRARY_PATH environment variable. Alternately, many systems store these paths in the �le /et
/ld.so.
onf(but editing this requires root a

ess). To see if your
lient binary
an �nd libs11n, type the following from a
onsole:ldd /path/to/my/appExample:stephan�owl:~/
vs/s11n.net/1.1/s11n/sr
/
lient/sample> ldd ./demo_
oord16

linux-gate.so.1 => (0xffffe000)libs11n.so.1 => /home/stephan/
vs/s11n.net/1.1/s11n/sr
/libs11n.so.1 (0x40019000)...libdl.so.2 => /lib/libdl.so.2 (0x4034d000)If you see a message like �not found� next to a library, then the dynami
 linker
annot �nd it. In that eitheryou do not have the library or it is not in one of the sear
h paths used by your system's dynami
 library loader,whi
h are typi
ally de�ned in the environment variable $LD_LIBRARY_PATH or the �le /et
/ld.so.
onf.2.6.4 Building under Cygwin, Ma
 OS/X (Darwin), et
.As i not have these tools, i
annot dire
tly do ports to them. Anyone interested in assisting, please get in tou
h.The sour
e
ode is believed to be
ompilable under any re
ent, standards-
ompliant C++ platform. It mightrequire a tweak here and there for spe
i�
 platforms, but no major in
ompatibilities are expe
ted.2.7 Version Compatibility�In this library, the only thing whi
h is
onstant is the namespa
e.�Anonymous Software DeveloperAs of the release of 1.0.0, libs11n will attempt to follow the version
ompatibility guidelines laid out below.
• Major version number: the X in X.Y.Z. With Major version in
rements there are no set guidelines asto what might
hange, and there are absolutely no guarantees of
ompatibility with older releases.
• Minor version number: the Y in X.Y.Z. Minor number in
rements may or may not be API-
ompatiblewith previous releases. As per �the Linux
onvention�, odd-numbered Minor numbers represent �devel-opment trees�, intended for developers and early-adopters. Likewise, even-numbered Minor numbersrepresent �stable� trees, suitable for
lient use. Within development trees, existing
onventions might be
hanged signi�
antly at any time, whereas in stable trees they will not.
• Pat
h level: the Z in X.Y.Z. Pat
h-level
hanges should be
onventions-
ompatible with earlier releasesin the same Minor number, and preferrably binary-
ompatible. Binary
ompatibility will be sa
ri�
ed inthe interest of �important� �xes or additions, but this should be the ex
eption, not the rule. Within thesame even Minor number, well-established
onventions will never be drasti
ally altered from one pat
hlevel to the next (in development trees, anything goes).s11n's basi
 model ensures that data formats are almost always
ompatible a
ross di�ering s11n versions, andthat when they are not then it was intended to be so (it doesn't happen by a

ident). It is very rare thata format ever
hanges after it's initial de�nition, and thus data saved with s11n are �almost guaranteed� tobe
ompatible a
ross s11n versions, assuming a given format is not abandoned at some point. In
ases wheresu
h
ompatibility is broken, i will do my best to release a tool to
onvert older data �les to newer formats.Histori
ally speaking, only on
e has an s11n-supported format ever
hanged signi�
antly after its initial release(and two of them have stayed the same sin
e the year 2000). See se
tion 14.2 for more information on theavailable Serializers.2.8 Optional supplemental librariess11n
an make use of the following additional libraries, but does not stri
tly require them:
• zfstream, a published-by-s11n.net lib, provides transparent de/
ompression for �les using zlib and bz2.This library
omes as part of the sour
e bundle but is not required by s11n 1.1 and higher (it is required in1.0.x). Dire
t dependen
ies on this library are not re
ommended, as this library will be repla
ed on
e i getmy hands on some more �exible
ode being written by my friend Mar
 Duerner. If you want zlib/bz2lib
ompression now, however, this is the way to plug it in to s11n.
• libexpat, required only if you want to build and use the expat-based XML Serializer (se
tion 14.2.2).This library is almost
ertainly installed on almost all Unix-like OSes, be
ause it is the de fa
to standardamongst the various Open Sour
e, C-based XML libraries. The
on�gure s
ript
he
ks for it, and disablesthe expat-based Serializer if the expat library and headers are not found.17

3 Main di�eren
es between 1.0.x and 1.1/1.2"We're going to tell people that even if (it) means we're going to break some of your apps, we'regoing to make these things more se
ure. You're just going to have to go ba
k and �x it."Craig Mundie, of Mi
rosoft http://www.wired.
om/news/te
hnology/0,1282,56381,00.htmlThis se
tion will only be of interest to users of s11n 1.0.x, and summarizes the signi�
ant
hanges from thatversion (i.e., those whi
h would dire
tly a�e
t users of 1.0). This entire se
tion assumes prior knowledge of hows11n works. If you have never used 1.0, and are just starting out with s11n, skip this se
tion entirely - it islikely of no value to you unless you're a fan of ar
ane software history.Version 1.1 is the �development/experimental� bran
h of libs11n, and what will eventualy be
ome the 1.2 �stable�bran
h. 1.0.x will
ontinue to be a
tively supported, and possibly extended in minor ways whi
h do not a�e
tthe underlying ar
hite
ture, for the forseeable future (at least through the end of 2005, probably).While this se
tion might look quite large, ar
hiti
turally very little has
hanged sin
e 1.0. However, there havebeen a number of
ode reorgs and a few relatively low-impa
t additions. It is believed that porting from 1.0will require relatively little
lient-side work (but some will be required, mainly due to header
hanges).3.1 s11n mantra
hangeSin
e the beginning, s11n's
ore mantra has been that s11n is here to Save Your Data, man! As is turns out,that is a misrepresentation. A
tually... it's a bald-fa
ed lie. The honest truth is that s11n is here to...SaveOur Data, man!Note the one-letter
hange, whi
h is more signi�
ant than the single missing letter might imply.3.2 Code
onsolidation and removalOne of the major goals of 1.1 is to have a tree whi
h will
ompile on (Mi
rosoft(tm) Windows(tm))(tm) platforms.Another is simplifying support for arbitrary build pro
esses. Yet another related goal is to make the
ore librarymore easily forkable, so as to be able to
opy it into arbitrary trees.One requirement for a
hieving these is some major
ode refa
toring, mainly elimination of all of the �extrabloat� whi
h
omes along with the support libs whi
h 1.0 relies upon (that is no trivial amount, due to mypa
krat-like nature when it
omes to utility
ode).So, with our sights on portability, and also in the interest of a
leaner build pro
ess, the vast majority of the�support libs� have been fa
tored either out or in. That is to say: some of the
ode (not mu
h) got moved(ba
k) in to s11n and the rest (the majority) was sent pa
king to CVS limbo. In any
ase, the s11n
ore tree isnow 100% standalone, with some notes:
• The zfstream support lib is used by s11n if it is found, but it is not required. This is the only one of the1.0 support libs whi
h 1.1 now looks for - it no longer uses any of the others whi
h 1.0 relies upon.
• All Serializers whi
h ship with the library will be linked in with the main library, instead of as separateDLLs. This is primarily in the interest of easing portability to other platforms. Note that this does not
hange how the Serializers are used in
lient
ode, but a�e
ts how they are linked in with the main lib: theyare still loaded via the dynami
-style interfa
es (e.g. s11nlite::
reate_serializer(�MySerializer�)).If you are the only other person on the planet who a
tually does dynami
ally load Serializer DLLs this
hange will a�e
t you, but if you're doing that then you know what needs to be done to �x it.3.3 Fa
tory
ode reimplementedWhile the older fa
tory/
lassloading
ode (named
llite) is fun
tionally okay, and provides an adequate interfa
e,its
ode base
ontains a lot of �evolution
ruft�. In De
ember, 2004, i was o�ered a spot on the p
lasses.
omteam, to assist them in their 2.x rewrite. The �rst assignment was to implement a new fa
tory, whi
h i did bytaking the learnings from their 1.x fa
tory, s11n's
llite, and some other experimental
ode. After it proved itsworth in the P::Classes tree, i ported a
opy into s11n. The newer fa
tory is not markedly improved, fun
tionally,but provides a more fo
used fa
tory interfa
e than
llite and has a
ouple new tri
ks to try out.(It may be interesting to know that P 2.x has it's own integrated
opy of libs11n. That's why i want the s11n
ode to be easily forkable!) 18

3.4 node_traits<>
hanges, s11n::data_node repla
ed with s11n::s11n_nodeTo make a long story very short: the data_node type was �the original� abstra
t s11n
ontainer19, introdu
edin s11n 0.7.0. When the type traits system
ame along (version 0.9.3), i refa
tored data_node into a slightlymore fo
used API, s11n_node. That
lass has been around sin
e the summer of 2004, but hasn't been a
tivelyused within the s11n tree (only for testing the node_traits-related features). As of 1.1.0, data_node has been
ompletely removed and repla
ed with s11n_node. Also, s11n_node's API has
hanged slightly, to make it abit leaner. Sorry for not having a depre
ation period, but making the swit
h is a
tually mu
h less painful thanit sounds - even trivial (or a no-op) for most
lient-side
ode.What this means for
lient
ode:
• Users of the s11nlite::node_type typedef normally simply need a re
ompile (whi
h they would needanyway, be
ause 1.1 is not binary-
ompatible with 1.0).
• Users of node_traits<> iterator-related typedefs and fun
tions will need some slight modi�
ations: don'tuse the (missing) typedefs, but go through the appropriate sub-typedef, so to say. For example:node_traits<>::begin()/end()and node_traits<>::[
onst_℄iteratorare now node_traits<>::property_map_type::members (they always were, but the �
onvenien
e� interfa
e was removed be
ause it was
onfusing to re-member if it refered to the properties or the
hildren).
• Clients who expli
itely used data_node should globally repla
e that with s11n_node. This transition willnormally be seemless if you use node_traits<NodeType> to manipulate your nodes (that is The One andTrue Way), otherwise other
hanges might be required to a

omodate the API di�eren
es between thetwo node types. The APIs are fun
tionally identi
al, but are intentionally di�erent so as to trigger errorsin the s11n
ore
ode if it does not hold to �the node_traits<> rule.� (That is, the two node types havedi�erent APIs to for
e me to �x any s11n
ore
ode whi
h isn't using node_traits<>!)
• Due to the above
hange, the data_node.hpp header of
ourse no longer exists.
• These
hanges should not a�e
t data �les at all, be
ause the two node types are fundamentally the same(only one string identi�er in their output is di�erent, but it's not signi�
ant for
lient purposes).Users who follow the do
umentation and use node_traits<NodeType> to query and manipulate their data nodes,and
lients who use template-de�ned Node Types rather than hard-
oded ones, are mostly not a�e
ted by this
hange but may need to make some header-related �xes and a
ouple typename �xes. e.g. see the notes aboutabout some typedef-related
hanges and the removal of the begin() and end() members of node_traits<>.Their existen
e was logi
ally ambiguous, with
hildren and properties both
ompeting for iterator types, andwas
onfusing to remember whi
h iterator begin() really returned. node_traits<> still
ontains all of thetypedefs and a

essors needed to get at that data, but the user will have to go one typedef or fun
tion
alldeeper to get it (but the
lient
ode's intention will also be
lear to humans, whi
h was not the
ase beforewithout an additional lookup in the API do
s).3.5 New header
onventions, faster
ompile timesLargely in the interest of bringing some sanity to the s11n build tree, and partly be
ause i have an insatiableurge to ha
k build pro
esses20, we have undergone some signi�
ant build tree and header reorgs. Again. Yes,i know that's twi
e... er... three times in the past 12-month period. Learn to think of it �improvement vianatural sele
tion� and it doesn't hurt quite so badly. If it makes you feel any better (it does me), the very basi
tests i have run show a
ut in
ompile time by as mu
h as 80%. That is, as mu
h as 5 times faster
omparedto equivalent 1.0
ode. Most
lient-side
ode will probably see
ompile times
ut by 50%-70%, at least as far asthe s11n-side of the
ompiles goes, and some
ode won't see mu
h of a di�eren
e.First o�, the main Serializable registration header has been renamed: reg_serializable_traits.hpp is now
alled reg_s11n_traits.hpp, be
ause that's what the �le does - registers s11n_traits<>-related
ode.Se
ondly, many headers have been renamed or
onsolidated into other headers (this mainly a�e
ts the i/o andproxy
ode, but also some of the
ore algorithms and fun
tors).The most notable reorg is how the serialization proxies for PODs and STL
ontainers are registered. In 1.0 theywere registered en masse via headers whi
h in
luded support for multiple
ontainers. This is all �ne and good,19Not to misrepresent: i mean �the original� as in �the �rst one to exist in libs11n.� The basi
 model for su
h
ontainers hadbeen demonstrated as early as summer 2000 in Rusty Ballinger's libFunUtil, if not also in other pla
es, and was used, but in amu
h di�erent way, in s11n 0.6.x and earlier.20Shameless plug: http://to
.sour
eforge.net 19

from an ease-of-use standpoint, but
auses measurable (and human-noti
able) in
reases in
lient-side
ompiletimes even for
ases where most of the proxies aren't used. In an attempt to de
rease
lient-side
ompile times,ea
h proxy type now has it's own header. All su
h headers follow
ommon naming
onventions and live in anew header subdire
tory:#in
lude <s11n.net/s11n/proxy/std/ve
tor.hpp> // register std::ve
tor<T> proxy#in
lude <s11n.net/s11n/proxy/pod/int.hpp> // promote 'int' to a first-
lass Serializable#in
lude <s11n.net/s11n/proxy/listish.hpp> // algos and base proxies for list-like types, but no proxy registration#in
lude <s11n.net/s11n/proxy/mapish.hpp> // algos and base proxies for map-like types, but no proxy registration... and so on...The end e�e
t is that
lients must individually
hoose whi
h proxies they will need. This is slightly unfortunate,but is a one-time
ost of in
luding the proper header(s). The main bene�t is, for the vast majority of
lient-side
ases, improved
ompile times. Even in the worst
ases,
ompile times should be faster than with 1.0.x be
ause1.0 tries to install a lot of proxies whi
h are almost never used. If this
hange really annoys users, they may maketheir own �mass-in
lude� �les and in
lude all the proxies they want to. In fa
t, if
ompile times are not a
on
ernto you, either be
ause you are extremely patient or be
ause you have a

ess to the lab's Monster Computer, ire
ommend the mass-in
lude approa
h, but only for the sake of ease-of-use when it
omes to �guring out whatproxies you need. For standard PC users, i don't re
ommend the mass-in
lude approa
h at all, at least notunless you are unusually patient while waiting for your
ode to
ompile.i have attempted to stru
ture the proxy headers in a maintainable and extendable manner, su
h that it shouldn'ttake too mu
h e�ort to lo
ate the proper proxy header one needs, nor to add new proxies by following the
urrent
onventions. If you have suggestions for a better layout, please feel free to get in tou
h! (But be aware thatyou suggestion might be used, whi
h might of
ourse mean more
ode reorgs. ;)3.6 Fet
hing
lass names of SerializablesIn one of those, �You utter moron! You should have done this nine months ago! � moments, the s11n_traits<SerializableType>interfa
e has been extended to in
lude one stati
 fun
tion:stati
 std::string
lass_name(
onst serializable_type * HINT);See the API do
s, in traits.hpp, for full details, but brie�y: this repla
es all of the older
lass_name<> and
lassname<>() kludgery whi
h has been around sin
e s11n's earliest days (0.2.x or 0.3.x, i think). The ende�e
t is the same, fun
tionally, but this approa
h �ts in
leanly with the rest of the API, whereas the olderapproa
h did not (i never did like the old way, but it was ne
essary for a long time). This approa
h also allowsusers of 3rd-party libraries like Qt to use polymorphism-friendly BaseObje
tType::
lassName() [or similar℄member fun
tions, whereas the older approa
h did not dire
tly support that at this level of the s11n ar
hite
ture.Design note: i am not at all happy about not providing a default of 0 for the HINT argument.However, given the usage of s11n_traits<>, whi
h is only �extended� via template spe
ializations,i also do not like the idea of relying on all spe
ializations to provide that 0 in their interfa
es. Also,in the
ase that it ever be
omes useful to make s11n_traits<> a virtual base
lass,
lass_name()might be
ome a virtual fun
tion (i repeat: that is theoreti
ally possible, not a
on
rete plan), anddefault parameter values in virtual fun
tions make me queasy, te
hno-philosophi
ally speaking.3.7 Client-extendable s11nliteOne of the more interesting additions to 1.1 is a polymorphi

lass whi
h provides the same API as s11nlite:
lient_api<NodeType>. This e�e
tively allows users to have an s11nlite interfa
e for
ustom Node Types or toadd
ustom stream handlers to the s11nlite API. s11nlite has been refa
tored to be based o� of this new
lass,su
h that
lients are be able to sub
lass it and provide their own
lass instan
e to s11nlite via a ba
k-door-shared-instan
e-inje
tion te
hnique. This
an be used, e.g. to provide network support on top of s11nlite usingtools like the experimental
ode at http://s11n.net/ps11n/ (that
ode was the primary inspiration for thenew
lass). For example, network-aware extensions to s11nlite
an be plugged in to arbitrary s11nlite
lientswithout their
ode, or s11nlite, even requiring a re
ompile. If some other desperate
oder out there adds, say,Ora
le support, your s11nlite
lient
ode will be able to use it without expli
itely having to know about it.Consider, too, that we
an a
tually use fa
tories to dynami
ally load arbitrary instan
es of the
lient_api<>.Weird, eh? 20

3.8 ~/.s11nlite
on�g �le removedIn 1.0, s11nlite saves its
on�guration when the library shuts down. While this is all �ne and good for a systemwhere only one app uses s11nlite, it
auses interferen
e when multiple apps share s11n. For example, when AppA sets s11nlite::serializer_
lass(�MySerializer�), App B is going to get that default the next time itstarts unless it sets its own (whi
h might then a�e
t App C... ad nauseum). Thus we take the simple routeand remove it. The only a�e
t this has on
lients is that they might want or need to set a default Serializerswhen their app starts up, using s11nlite::serializer_
lass().While the majority of s11n users use the library in only one sour
e tree, i
urrently use it in no less than sixproje
ts, and have often experien
ed problems with ea
h app imposing its own idea of a default �le format onthe other apps. So, like so many other dead-ends of evolution, ~/.s11nlite is gone.Sin
e the s11nlite
on�g obje
t was never really advertised as a feature, it is thought (hoped) that this
hangedoes not a�e
t any
lients.Note that the serialization of an appli
ation-wide
on�g �le is trivial, but that te
hniques like �nding a user'shome dire
tory are platform-spe
i�
 (even under Unix, $HOME is not always the user's home dire
tory).See se
tion 18.4 for info about a new
lass whi
h provides behaviour similar to the older s11nlite
on�g obje
t.3.9 Ex
eptions
onventionsAs of version 1.1, i've �nally started seriously working on de�ning ex
eption
onventions for the framework.Newer
ode �xes all known potential leaks whi
h
ould have happened in the fa
e of ex
eptions in 1.0.x. Also,many algorithms
an �nally make some guarantees whi
h weren't possible in 1.0. If you are a 1.0 user with no
ompelling reason to upgrade, this is the
ompelling reason. These �xes theoreti
ally
an't be ba
kported into1.0 without either a really signi�
ant e�ort or signi�
ant in
ompatibilities with other 1.0 releases, neither ofwhi
h i'm up for.See se
tion 16 for details, and please feel free to make suggestions.4 Core
on
eptsUsers who want to fully understand s11n should read this se
tion
arefully - here we detail the major
omponentsof, and terms used within the
ontext of, the s11n ar
hite
ture. Understanding these is
riti
al if one wantsto truly understand how the library works. That said, a lot
an be done
lient-side without understandinganywhere near all of the gory details: one
an get quite far by simply
opying example
ode!4.1 Terms and De�nitionsBelow is a list of
ore terms used in this library. The bolded words within the de�nitions highlight other termsde�ned in this list, or denote parti
ularly signi�
ant data types. This bolding is intended to help reinfor
eunderstanding of the relationships between the various elements of the s11n library.Note that some terms here may have other meanings outside the
ontext of this software, and those meaningsare omitted for
larity and brevity - here we only
on
ern ourselves with the de�nitions as they pertain to usas users of s11n.
• s11n - several meanings:� A short-hand form of the word �serialization�, used in many
ontexts.� The literal name of this software.� Serialization as a
omputing domain.� Other, more
ontext-spe
i�
, meanings.
• Data Node or S11n Node (S-Node) - a generi
 term for map-like types whi
h store arbitrary key/valueproperties and
hild nodes, plus some meta-data (like type information for the stored data). They arestru
tured in a tree-like fashion, DOM-style. In s11nlite this role is played by the s11n::s11n_node type,and
ore s11n supports any node type whi
h
onforms to the node_traits<NT>
onventions (see below).Note that using a Data Node's API dire
tly from
lient
ode is dis
ouraged. Please prefer the API providedby s11n::node_traits<DataNodeType> instead, as des
ribed in se
tion 6.1.As of version 1.1.3, the term Data Node is being slowly phased out in favor of S11n Node (or S-Node), asthat term �ts in better with this library. 21

• Node Traits (s11n::node_traits<NodeType>)- an interfa
e for intera
ting with S11n Nodes. Con-
eptually similar to the standard library's
har_traits<
har_t>. See se
tion 6.1.
• serializable (with a small �s�)- the property of being able to be saved and to restore state. For example,to allow persistent obje
t states a
ross appli
ation sessions, network
onne
tions, et
.
• Serializable Type or Serializable (with a big �S�) - any type for whi
h s11n re
ognizes a SerializableInterfa
e, either implemented dire
tly by the Serializable type or via a Serialization Proxy. Serial-izables save their state in S-Nodes during serialization and restore their state from S-Nodes duringdeserialization.
• Serializable Traits (s11n::s11n_traits<SerializableType>) - a type for en
apsulating s11n-relatedinformation about a Serializable Type. See se
tion 6.2.
• Serializable Proxy or Serialization Proxy - a fun
tor (optionally two) whi
h registers with s11n asbeing the handler for de/serialization of a given type. By extension, the proxied type is
onsidered to bea full-�edged Serializable. All de/serialize operations s11n performs on behalf of the proxied typeare delegated to the proxy type. This allows, amongst other things, transparent serialization of 3rd-party
lasses and drasti
aly simpli�es the serialization of
ontainers.Proxies are not Serializables - they are, more properly, the implementation for a Serializable's serial-ization operators. (Got that?)
• serialization, to serialize - several meanings:� To save the state of a Serializable . In this library that is a

omplished by storing the state in anSNode, whi
h is
on
eptually identi
al to storing a
opy of it in an STL
ontainer.� To save an SNode to a data stream via a Serializer. Stream-based serialization is normally
alled�saving�.� Several other subtle,
ontext-spe
i�
 meanings.
• deserialization, to deserialize - the
onverse of serialize:� To restore the state of a Serializable, presumably using data from an S-Node.� To load an S-Node from an input stream. Stream-related deserialization is normally
alled �loading�.
• de/serialization or de/serialize - shorthand forms of �deserialization and/or serialization� and �deseri-alize and/or serialize.�
• Load/Save vs De/Serialize - By s11n
onvention, the words "save" and "load" are used when dealingwith streams or �les, and "serialize" and "deserialize" are used when dealing with saving or restoring thestate of a Serializable to or from an S-Node. Sometimes the words are used inter
hangeably and, whileit is te
hni
ally
orre
t in many
ases, su
h usage is
onsidered �marginally ambiguous� in s11n.
• Serializer - a type responsible for
onverting S-Nodes to and from a spe
i�
 grammar (i.e., a dataformat). For example, some Serializers use an XML diale
t while others use
ustom formats. Theoreti
ally,any data whi
h
an be stru
tured in a DOM-like fashion (even if only via logi
al transformation)
an behandled by Serializers. In s11n Serializers are also always Deserializers (at least logi
ally, in terms of theAPI interfa
e).
• serialization operators, de/serialize(), or Serializable Interfa
e - generi
 names for a pair ofde/serialize fun
tions whi
h Serializables and Serializable Proxies have, regardless of the a
tual namesor argument types of the fun
tions. Sometimes also used to refer to the de/serialize fun
tions within otherinterfa
es, su
h as
ore library's de/serialize() fun
tions.
• de/serialization operations - generi
 terms en
ompassing any fun
tions whi
h trigger a
hain ofevents whi
h lead through the s11n de/serialization
ore (and presumably ba
k). In plain English:s11n::de/serialize<>(), and related fun
tions, fall into this
ategory. If we needes a really te
hni-
al de�nition, this would be pretty
lose to
orre
t: any operations whi
h end up forwarding through thes11n_api_marshaler<> (SAM) internal interfa
es (se
tion 17).
• Default Serializable Interfa
e - Serializables whi
h implement both of their serialization operators asoperator() , and whi
h follow the
onventions laid out in se
tion 5, are said to implement the DefaultSerializable Interfa
e. Types whi
h do this do not need to tell s11n what their serialization interfa
e lookslike - we will be able pi
k them up automati
ally.22

• Classloader or Fa
tory - an interfa
e used to load obje
t instan
es based on a lookup key, potentiallyin
luding dynami
 sear
hes for new types (e.g., via DLLs). In s11n this lookup key is
onventionally thestring form of a
lass' name. Classloaders are used during deserialization to load the proper type for agiven node (this is ne
essary in order to support polymorphi
 deserialization). The s11n
lassloader hassupport for loading
lasses from DLLs, but that feature is not
overed mu
h in these do
s be
ause itsoperation is transparent to the API. Classloaders work primarily not o� of spe
i�
 �
on
rete� types, buto� of Interfa
e Types, as des
ribed brie�y below. For more detail than you probably want to knowabout these, see the summary paper at: http://s11n.net/papers/#
lassloading_
pp
• T's
lassloader, or the T
lassloader - Refers the the
lassloader (fa
tory) whi
h uses type T as it's pointof referen
e for registering and loading
lasses. More spe
i�
ally, it (
urrently) means s11n::fa
::fa
tory_mgr<T>,though the exa
t fa
tory implementation whi
h s11n uses is not a de�ned part of the publi
 interfa
e. Forproper polymorphi
 deserialization, subtypes of T should be registered with T's
lassloader, regardless ofwhether or not they also register with their own
lassloader (e.g. fa
tory_mgr<SomeTSubType>).
• Interfa
e Type [note: in s11n 1.0 these are referred to as Base Types, whi
h is marginally in
orre
tand de�nitely more ambiguous than Interfa
e Type.℄ - in s11n, espe
ially in the
ontext of a
lass-loader, this is used to mean the base-most type whi
h a given
lassloader �knows about.� This typeis used for registering subtypes of Interfa
e Types with the Interfa
e Type's Serializable Interfa
e,and is
riti
al for
lassloading purposes. In a broader sense, Interfa
e Types are used as
ontexts formarshaling the s11n and
lient-side Serializable Interfa
es into internally-
ompatible forms. Theabstra
t topi
 of Interfa
e Types is
overed in more detail in a paper written as part of this proje
t:http://s11n.net/papers/#
lassloading_
pp
• Streamable [Types℄ - In the
ontext of s11n this means any type for whi
h ostream<< and istream>>operators
an be applied to su

essfully save and restore the state of an obje
t of that type. This inherentlyin
ludes all PODs, std::string (though with some
aveats involving whitespa
e handling), and any
lient-supplied types whi
h meet these
onditions. This also impli
itely ex
ludes all pointer-quali�ed types (butnote that s11n often handles obje
ts of types (SerializableT) and (SerializableT *) equally). Serializablesare not impli
itely Streamable, as s11n does not deal with streams at it's
ore, and thus the Serializableinterfa
e is stream-ignorant.
• SAM, the s11n API Marshaler - SAM is the layer of s11n responsible for a
ting as a
ommuni
ation
hannel between s11n's internal API and any
lient-side APIs, in
luding, but not te
hni
ally limitedto, forwarding requests to Serializable Proxies. SAM allows
lients to transparently proxy the s11ninterfa
es, as
overed in se
tion 17. Clients will almost never have to know about SAM, but it does playa signi�
ant role internally.
•
ore s11n or the s11n
ore/kernel - These are generi
 terms referring to the
ore-most fun
tionsin s11n. Spe
i�
ally, this is limited to the
lassloader-related fun
tions in the s11n::
l namespa
e,the s11n::de/serialize() variants, and s11n::s11n_api_marshaller<>. Everything else, from theSerializers to the s11nlite interfa
e, is built around this tiny
ore.
• POD - Plain Old Data. In s11n this term does not have quite the same meaning as the C++ standardapplies to it: we use it only to mean basi
, built-in data types (int,
har, double), plus std::string.In the C++ standard the term does not in
lude std::string but in
ludes stru
ts whi
h
ontain onlyPODs [CTM2005℄, and thus our usage in
ludes a subset of the standard's de�nition. Common usage ofthe term does not in
lude stru
ts, so i don't feel bad about this slight mis-use of the term.Did you get all that? Don't worry - you don't need to memorize this list, but if you �nd yourself
onfused by aterm in this do
umentation, try looking it up in the list above.Using the library is not as
omplex as the above list may imply, as the rest of this do
umentation will attemptto
onvin
e you. Yes, the details of serialization and
lassloading, espe
ially in a lower-level language like C++,are downright s
ary. s11n tries to move the
lient as far away as possible from those s
ary details, and it goes togreat pains to do so. However, some understanding of the above terms, and their inter-relationships, is
riti
alfully understanding the library.Some non-s11n-related terms show up often enough in this do
umentation that readers not familiar with themwill be at a disadvantage in understanding the do
umentation. Brie�y, they are:
• i.e. - �in other words� or �in e�e
t� (from the Latin id est21).21http://www.wsu.edu:8080/~brians/errors/e.g.html 23

• e.g. - �for example� or �example given� (from the Latin exempli gratia).
• Algorithm - we use the same general meaning as in
ommon STL usage: a
omputation, normally onewhi
h is generi
ized in form su
h that it
an be applied to a wide range of types whi
h meet a publishedset of
onventions for that algorithm. Like fun
tors, understanding algorithms is essential to e�e
tivelyusing the STL, and the two often go hand-in-hand.For numerous well-published examples of algorithms see those in the STL itself, de�ned in the ISO-standard <algorithm> header �le. s11n in
ludes many serialization-related algorithms and fun
tors.
• Fun
tor - a fun
tion or a stru
t/
lass type implementing fun
tion-
all semanti
s. i.e., a type implementingone or more operator()member fun
tions. Fun
tors are a
ornerstone of all STL-style development, andmust be well understood before one
an make full use of s11n, or the STL for that matter.
• ODR, the One De�nition Rule - C/C++'s rule whi
h, put simply, basi
ally states that no type maybe de�ned (i.e., implemented) more than one time in any given binary or library. This is not an arbitraryrule, but a te
hnologi
al limitation, akin to std::map being able to
ontain no more than one obje
t witha given lookup key. In any
ase, it's rather a sane behaviour, if you ask me.In s11n ODR is an oft-heard term be
ause its template-based nature, in parti
ular its use of ma
rosand header �les to generate �behind-the-s
enes� utility and marshaler
lass template spe
ializations at
omplile-time, makes it quite su

eptible to ODR violations if some simple, non-obstru
tive rules are notfollowed (as des
ribed elsewhere in this manual). (Trust me, on
e you realize how it works this is never apra
ti
al hinderan
e, and it's trivial to avoid on
e you seen it happen it a few times and understand it'snature.) With the release of version 0.8.0, all
ommonly-o

urring ODR-related problems are believed tobe solved. (i haven't personally seen an s11n-
aused ODR violation sin
e the 0.8.x series, ex
ept when ihave in
orre
tly double-registered a proxy in the same sour
e �le.)
• Style Points(SP) - an abstra
t, often poorly-understood and underestimated, unit of measurement of�how mu
h Style� a parti
ular pie
e of
ode exhibits. Poorly-designed
ode gets minus points, whereasespe
ially
lever
ode may get plus points (or may, as is o

asionally the
ase, a
tually be too
lever forit's own good, and get no points at all). The measurement system for Style Points is not standardized.One
ommon way for one developer to
ommuni
ating that s/he wishes to assign SP to, or substra
t SPfrom, another developer is to say say something like, �+1�, or �-1�. A phrase like, �
ool
ode!� impli
itely
arries at least one SP, whereas the phrase, �great ha
k!� or �you ro
k!� is generally worth several SP (atleast from the re
eiver's perspe
tive).It is signi�
ant to keep in mind that SP de
lared by non-developers simply go to /dev/null - they neither
ount nor dis
ount the re
ipient, ex
ept possibly in his or her own ego22. Additionally, the amount of SPa given reward or pentalty gives or takes may be adjusted by the relative experien
e levels or reputions ofthe giver and re
eiver. e.g. a 6-month C++ newbie giving +1 SP to a 10-year veteran is not worth nearlyas mu
h the other way around.The giving of Style Points is sometimes referred to as �s
henking� (past tense: s
henked or s
henkt),derived from the German verb s
henken, meaning �to give [free of
ost/as a gift℄.�As software developers mature23 they invariably begin, at some inde�nate point, to
on
entrate on Styleas mu
h as they do on the nature of the algorithms they develop. This is a natural part of a developer'sgrowth as a professional, just as it is in any �eld, and thus experien
ed
oders
an generaly �pi
k up SP�mu
h more readily than greenhorns
an.4.2 The O�
ial Grossly Oversimpli�ed Overview of the s11n ar
hite
ture�Like your s
rotum, here it is in a nutshell...�Bloodhound Gang (the band, not the TV show or
hildren's books)s11n is built out of several quasi-independent sub-modules. �Quasi-independent� meaning that they mostly relyon
onventions developed within other modules, but not ne
essarily on the exa
t types used by those modules.Su
h design te
hniques are a
ornerstone of templates-based development, and will be a well-understood prin
ipalto STL
oders, thus we won't even begin to tou
h on its bene�ts, uses, and multitudinous impli
ations here.Shameless Plug24:22And we programmers, by and large, have a repution for living the majority of our lives in exa
tly that spa
e. ;)23As developers, of
ourse, not ne
essarily as human beings.24Su
h a plug is typi
ally worth approximately -1 Style Point, a
ost from whi
h this plug is not ex
empt. In fa
t, these do
shave so many shameless plugs and outbursts of jubileaum that i'll go ahead and do
k the do
ument as a whole -10 SP. ;)(i wouldn't be prea
hing it if i didn't believe honestly it, though, so the devotion's gotta be worth a
ouple of SP!)What a Style Point? See se
tion 4.1. 24

This parti
ular aspe
t of s11n's design is
riti
al to s11n's �exibility, and is one of the implemen-tation details whi
h
atapults it far ahead of traditional serialization libraries. It is this aspe
twhi
h allows, for example,
lient libraries to transparently adapt this framework's interfa
es to the
lient's interfa
e(s), and to transparently adapt other
lients ' Serializable interfa
es (and, addition-ally, transparently adapt to them). In most other libraries this model is the other way around: the
lient has to do all adapting himself. Consider, e.g. that any type
an
onverted to a Serializablewithout, e.g. sub
lassing anything at all. That is, a
lient
an have 1047 di�erent
lasses - ea
h withtheir own serialization interfa
es - and they
an all transparently de/serialize ea
h other as if theyall had the same fun
tion-level interfa
e25.Enough plugging. Let's brie�y go over s11n's major
omponents, in no parti
ular order:
• Classloader - a fa
tory for
reating
lasses based on lookup keys (e.g.
lass name). This is a
riti
alelement for proper polymorphi
 deserialization, parti
ularly when loading
lasses on-the-�y from externalsour
es (e.g. a DLL).
• s11n::s11n_node - this is the referen
e implementation for the S11n Node (a.k.a. Data Node)
on
ept.This is supported by all of supplied node-related algorithms and fun
tors, though they a
tually have nodire
t dependen
ies on it. It is
onsidered poor style use
all the Data Node API dire
tly from
lient
ode- using the s11n::node_traits<NodeType> interfa
e is highly preferred, for
ompatibility with 3rd-partynode types and for future
ompatibility with new node types. For example, s11n 1.0.x uses a di�erent nodetype (s11n::data_node), and using the node_traits<> to a

ess nodes makes this transition transparent.
• Core de/serialize() fun
tions - a set of fun
tions whi
h hide the API marshaling that goes on fortranslating arbitrary Serializable interfa
es into something ea
h other
an use. At the appli
ation level,these fun
tions typi
ally make up the heart of the
lient-side s11n interfa
e, whereas at the library- and
lass- levels the available fun
tors and algorithms a mu
h more likely to play a heavy role. It may beinteresting to note that the
ore API is made up of less than 50 lines of
ode.
• Serialization API marshaler (SAM)- the
ore de/serialize fun
tions pass all of their request throughthis internal layer. These types
an be swapped out transparently,
ustomizing the serialization interfa
eon a per-base-type
ase. This feature is used, for example, to dire
t serialization through SerializableProxies, or to implement pointer-to-referen
e type translation as needed. These marshalers �lter everysingle de/serialize
all made via the
ore, and thus the ability to repla
e them on the
lient side gives
lient
ode 100% plug-in a

ess to the framework's de/serialization
ore, without having to know the details ofhow everything is marshaled. SAMs
an then do almost whatever they like with the API, ex
ept
hangeparameter
onstness for nodes and serializables - they may add arguments as they wish! This
an be used,e.g. to implement framework-enfor
ed data versioningSAM is
overed in se
tion 17.
• Type Traits (se
tion 6) - as of version 0.9.3 these types are used to en
apsulate interfa
e informationfor Serializables and Data Nodes. Users of the STL may be familiar with standard traits types su
h asiterator_traits<> or
har_traits<>. The s11n traits types, s11n_traits<> and node_traits<>, playsimilar roles as those types do in the STL. Note that s11n_traits<> and SAM overlap is some ways, asdes
ribed in se
tion 17.
• Serializers - these obje
ts are responsible for marshaling S-Nodes to and from spe
i�
 �le formats (alsoknown as grammars). The library
urrently s11n ships with several Serializers, supporting a variety ofdata formats. All Serializers shipped with s11n are available to s11nlite, but s11nlite restri
ts itself, forpurposes of saving data, to one of them (whi
h one it uses is not stri
tly de�ned by the interfa
e, andmay easily be de�ned by the user). s11nlite does not need to be told what format to use for loading, asthat is determined dynami
ally (see se
tions 14.1.1 and 14.1.4).
• s11nlite - a tidy little interfa
e providing a wrapper around the above layers, providing for most
ommon
lient obje
t serialization needs. Intended also as a sample
lient-side interfa
e implementation. Thatis, by implementing something like s11nlite a proje
t
an
ompletely hide it's obje
ts from any dire
tknowledge of libs11n, helping to support the �non-intrusion prin
ipal� whi
h s11n works hard to uphold.For an example of this, see the P::SIO module in the P::Classes 2.x sour
e tree (via http://p
lasses.
om),where we have implemented a
ustom s11nlite-like interfa
e to suit the needs of that proje
t better.
• Generi
 helper fun
tors and algorithms to support internal and
lient-side manipulation of Data Nodesand Serializers, also helpful for s11nlite.25Whereas they do all impli
itely share a
ommon logi
al interefa
e - that of a Serializable, as de�ned by s11n's
onventions.25

There are also a number of less-visible support layers/
lasses/fun
tions. See the README �le for an overviewof where ea
h part of the library lives in the sour
e tree. The API do
s reveal the whole spe
trum of availableobje
ts (many of whi
h are internal or spe
ial-
ase, and
an be ignored by
lients).Some of the sub-sub layers exist purely as
ode generated by ma
ros (su
h as the
lassloader registration ma
ros),e.g. to install
lient-spe
i�
 preferen
es into the library at
ompile-time.4.3 Pro
ess Overview4.3.1 SerializationIn the abstra
t, this is normally what happens for a serialization operation:1. Client requests the serialization of a Serializable. This is initialized by passing the Serializable into a data
ontainer (e.g. an S-Node) via the s11n serialization intera
e (e.g. s11nlite::serialize()).2. s11n proxies the request to the registered Serializable Interfa
e and passes the target S-Node and sour
eSerializable to the registered interfa
e.3. The serialize operator's implementation should save the Serializable's state into the data node. It returnstrue on su

ess and on error returns false or throws an ex
eption.4. s11n returns a data node to the
lient, presumably populated with the data from the Serializable.5. Client sele
ts a Serializer type and sends the Node to it, along with a destination stream/�le.6. Serializer formats the Node into the Serializer's grammar.7. The
lient gets noti�
ation of su

ess or failure (true or false, respe
tively, or potentially an ex
eption).Re
ursive serialization
an be triggered, e.g. in a serialization operator's implementation where a
hild Serial-izable is serialized.Note that in s11nlite the Serializer sele
tion steps are abstra
ted away to simplify the interfa
e.4.3.2 DeserializationA
lient-initiated deserialization request in s11n normally looks more or less like this:1. Client requests the deserialization of a Serializable obje
t from a data stream/�le.2. s11n analyses the stream to �nd a mat
hing Serializer
lass, then passes the stream o� to the that
lass.3. The Serializer parses the stream into a tree of S-Nodes and returns the root node to s11n. Obviously,if there is no Node then pro
essing stops here with an error (typi
ally, false or 0 is returned, though anex
eption may also be thrown).4. s11n looks at the root Node to determine whi
h Serializable Type to instantiate. If it fails to �nd the
lass,or
annot instantiate the requested type, pro
essing stops with an error (typi
ally false or 0 is returned,though an ex
eption may be thrown).5. s11n marshals the data-to-be-deserialized to the registered (De)serialization Interfa
e for Serializable'stype.6. Deserialize operator's implementation should restore the Serializable's state from the sour
e Data Node.If it returns false or throws then pro
essing stops. In the
ase of an error it may do post-error
leanup onthe obje
t to prevent leaks of resour
es allo
ated during deserialization.7. s11n destroys the now-unne
essary S-Node tree.8. s11n returns a (Serializable *) to the
lient, whi
h the
lient now owns.The interfa
e also supports deserializing nodes dire
tly into arbitrary Serializables, e�e
tively bypassing the�rst four of the above steps and not returning a pointer to a new obje
t (it uses the target obje
t the user givesit). Also,
lients may stop at point 7 if they are only interested in the raw data, as opposed to wanting theobje
ts the data represent. For example, the s11n
onvert and s11nbrowser appli
ations (se
tions 21.1 and21.2) never rely on a spe
i�
 Serializable Types, and only work with S-Node trees.26

4.4 Node Names and Property Key naming
onventions (IMPORTANT!)When saving data ea
h node is given a name, fet
hable via node_traits<NodeType>::name(). Node names
an be thought of as property keys, with the node's
ontent representing the value of that key. Unlike propertykeys, node names need not be unique within any given data tree. All nodes have a default name, but the defaultname is not de�ned (i.e.,
lients
an safely rely on new nodes having some Serializer-parseable name).In terms of the
ore s11n framework, the key/node names
lient
ode uses are irrelevant, but most data formatswill require that they follow the syntax
onventionally used by XML nodes and in most programming languages:Alphanumeri
 and unders
ores only, starting with a letter or unders
ore .Any other keys or node names will almost
ertainly not be loadable (they will probably be saveable, but thedata will be e�e
tively
orrupted). More pre
isely, this depends on the data format you've
hosen (some don't
are so mu
h about this detail).Numeri
 property keys are another topi
 altogether. Stri
tly speaking, they are not portable to all parsers. Morespe
i�
ally, numeri
 keys (even �oating-point) are handled by most of the parsers supplied with this library(even funxml and simplexml, but not expatxml), but the data won't be portable to more standards-
ompliantparsers. Thus, if data portability is a
on
ern, avoid numeri
 property keys and node names altogether.Serializable
lasses normally do not need to deal with a node's name() ex
ept to de/serialize
hild Serializables.There are many
ases where
lient
ode needs to set a node name manually, but these should be
ome
lear tothe
oder as they arise.4.5 Overview of things to understand about s11nAfter reading over the basi
 library
onventions, users should read through the following to get an overview ofwhat topi
s whi
h should be understood by by
lients in order to e�e
tively use the s11n framework. Mu
h ofit is over-simpli�ed here - this is an overview, after all. Additionally, some of it is true for s11nlite, but onlypartially true for
ore s11n.
• S-Nodes are the basi
 types used to store arbitrary key/value pairs and
hild obje
ts. They follow aDOM-style interfa
e, so their usage is fairly straightforward. The
ore library and generi
 algorithmssupport any S-Node type whi
h
an be proxied via s11n::node_trails<> (se
tion 6.1).
• The entire
lient-side interfa
e for loading and saving all obje
ts is de
lared in <s11n.net/s11n/s11nlite.hpp>,in the s11nlite namespa
e. The
ore
ode, and many node-related fun
tors and algorithms are availablein these namespa
es: s11n, s11n::list, s11n::map, s11n::va. That said,
lients may dire
tly use the
ore s11n, bypassing s11nlite
ompletely, but using s11nlite is highly re
ommended.
• s11n is very
ontainer/fun
tor/algorithm based, so its usage should be familiar to experien
ed C++ users(espe
ially users of the STL).
• s11n does not enfor
e a spe
i�
 Serializable interfa
e, but inherently supports the so-
alled Default Seri-alizable Interfa
e. Client-side
lasses whi
h implement the default Serializable interfa
e (des
ribed later)need no spe
ial registration as being Serializable types. Custom interfa
es and proxies are easy to install,as des
ribed later.
• s11n's
ore is not stream-oriented, but
ontainer-oriented. That is, we serialize data to and from
ontainers,and those
ontainers get formatted to (or from) streams by Serializers. Thus s11n doesn't really
are about�le formats - its
ore interfa
e is 100% data format agnosti
. For saving,
lients must de
lare a format,but loading is dispat
hed to the appropriate parser depending on the
ontent of the stream. That said,s11nlite uses a default Serializer, so
lients who don't
are about the underlying data format need neverworry about this highly overrated detail.
• Classloaders and their �Interfa
eType� types are important
on
epts to understand in s11n, mainly fortemplate-types reasons. They are
overed in detail in the
lassloader do
umentation, and will be explaineda bit later on. All types whi
h are to be deserializable must be registered with an �appropriate
lassloader.�What that really means, in all it's te
hni
al glory,
ould easily turn into whole do
ument! Be assuredthat this do
 will try to tell you what you need to know in order to register your
lasses (it is 100%non-intrusive on
lasses). The hope is that most s11n use
ases won't require mu
h understanding of thesubtleties of the
lassloader framework. 27

4.6 Notes on error/su

ess values (i.e., justifying the bool)s11n uses, almost ex
lusively, bool values to report su

ess or failure for de/serialize operations. The reasonsthat bool was
hosen are detailed, but here's a summary:
• SOME error value is needed. Integer values must either be mapped to a known set of error
odes or beinterpretted
lient-dependently. Neither of those approa
hes are terribly suitable for s11n, largely due toit's inherently abstra
t and generi
 nature.
• Based on usage history, i felt it was unne
essary to employ ex
eptions as the standard means of errorreporting. (i partially regret this, but still generally feel that imposing ex
eption
onventions on the
lients would not be a good idea.)
• If we
onsider the standard ostream<< and >>istream operators for a moment: yes, it is te
hni
allypossible to
he
k for an error after an extra
tion/insertion by
he
king the stream's state, but in pra
ti
ethis is almost never done, at least for ostreams. Thus, i/ostream error
he
king
onventions are oddlysimilar to s11n's, probably due to their logi
ally similar roles as i/o marshalers.
• Related to the previous point: s11n's
ore is
ontainer-based, and how many
oders
he
k for properinsertion after a push_ba
k() or insert()? None, be
ause those operations (perhaps only by
onvention?)simply do not fail.
• i a
tually knew a
oder on
e who (in Java)
hose to return the String �su

ess� to indi
ate su

ess andnon-�su

ess� to indi
ate failure. i �gure that's also not appropriate for s11n. ;)s11n's
on
eptual an
estor, Rusty Ballinger's libFunUtil, uses void returns for it's de/serialize operations, whi
hmeans that
lients essentially
an't know if a de/serialize fails. When designing s11n i strongly felt that
lientsneed at least add some basi
 level of error dete
tion, and �nally settled on plain old booleans. There is in fa
ta
omi
 irony in that de
ision: it is so rare that a de/serialization fails, that a void return type would do justas well for 99% of
ases!The seeming shortage of de/serialization failures
an primarily be attributed to the following:
• The vast majority of the
lient-side part of s11n doesn't work with i/o streams (in parti
ular, with �les).
• The points at whi
h Serializables are given data nodes are far away (in interfa
e terms) from the streamoperations. Stream operations are, by far, the most likely point of failure in a serialization library (badinput format, �le does not exist, out of disk spa
e, write a

ess fails, NFS
onne
tion
ut, blah blah blahyada yada yada).
• The s11n
ore is
ontainer-based, and
ontainer insertions and extra
tions, as a general rule, do not fail.Also,
ontainer sear
hes only fail in the sense that the sought-after data simply isn't there.
• In the event of a stream- or grammar-level input failure the pro
ess will fail early enough that no deserializeoperators are be
alled, so they
an't very well fail,
an they?[... mu
h later ... ℄While returning a bool for a single de/serialization operation still seems reasonable, the logi
 behind it ratherbreaks down when a tree of obje
ts is serialized. If any given obje
t returns false the the serialization as a wholewill fail. This implies that whole trees
an be spoiled by one bad apple (no pun intended). In a best-
ase s
enarioonly one bran
h of the tree would be invalidated, but... is that a good thing, to have partial data saved/loadedand have it �agged as a su

ess? Of
ourse not, thus s11n must generally
onsider one serialization failure in a
hain of
alls to be a total failure. This is its general poli
y, though
lient/helper
ode is not required by s11nto enfor
e su
h a
onvention26.Furthermore, some spe
i�
 operations, su
h as using std::for_ea
h() to serialize a list of Serializables, may[will℄ have unpredi
table results in the fa
e of a serialization failure. Consider: in that
ase there is no reasonableway to know whi
h
hild failed serialization, as for_ea
h() will return the overall result of the operation. If thefun
tor performing the serialization
ontinues after the �rst error it will produ
e mu
h di�erent (but not ne
es-sarily more valid) results than if it reje
ts all requests after a serialization failure. The subnode_serialize_f<>
lass , for example, refuses to serialize further
hildren after the �rst failure, but this is purely that
lass'
onvention, not a rule.Ah... there is no 100% satisfying solution, and bools seem to meet the middle ground fairly well.[... mu
h later ... ℄As of version 1.1 we've introdu
ed proper ex
eption handling: more info about this is in se
tion 16.26Espe
ially when s11n's author
annot even de
ide if s11n
urrently does The Right[est℄ Thing ;). It's mainly a philosophi
alquestion at this point, and those are often the most di�
ult ones in software design. :/28

4.7 s11n and Patterns�Patterns� is a term we've all
ome to know and love over the past de
ade. While i am no Pattern Guru, and
annot name more than a
ouple o� the top of my head, i thought it might be interesting to list the major
omponents of the library and the Patterns they [would seem to℄ follow. This might help some users understandthe library somewhat better...4.7.1 The
oreThe
ore of the library is essentially a Proxy. All that it does is use templates to sele
t types, and then
all aknown interfa
e in that type, passing on the
aller's arguments and returning the same value as the proxy.4.7.2 ClassloaderThe
lassloading layer is, quite naturally, a Fa
tory : it maintains a mapping of keys to fun
tions whi
h returnnew obje
ts.4.7.3 ProxiesProxies are, quite non-intuitively, normally more like Visitors than Proxies. This really depends on the imple-mentation, but in pra
ti
e most are Visitors. The original design goal of the s11n proxies was to do only APImarshaling (proxying), but it qui
kly be
ame
lear that they
ould do mu
h more than that. By that time,though, the term Proxy was already in use and there was no reason (at the time) to think it wasn't appropriate.Proxies normally implement one of three approa
hes:1. They simply pass on their arguments to a known Serialization Operator in the Serializable type theyproxy. In this sense they are naturally Proxies.2. They implement the de/serialization logi
 for a Serializable type. In this sense they
ould be
onsideredVisitors.3. They pass on all arguments/return values to/from algorithms whi
h perform #2. Again, in this sensethey are Proxies.For you Pattern Gurus out there: is there a separate Pattern for API Marshaler, or is that just a fan
y wordfor Proxy?4.7.4 i/oThe i/o layer is
on
eptually very similar to the proxying layer, though with mu
h less indire
tion going on.This layer would appear to be mainly a Visitor, at least for output purposes, but there might be
loser Patternmat
hes, so to say. In some sense it is also a Fa
tory of S11n Nodes.4.7.5 s11nlites11nlite is a
lassi
 Wrapper, whi
h probably also falls into the
ategory of Proxy or Marshaler.5 Serializable Interfa
es: overview and
onventionsRather than overload you with the details of this right up front, we're going to grossly oversimplify here - tothe point where we're almost lying - and tell you that the following is the interfa
e whi
h s11n expe
ts fromyour Serializable types.Ea
h Serializable type must implement the following two methods:A serialize operator:[virtual℄ bool operator()(NodeType & dest)
onst;A deserialize operator: 29

[virtual℄ bool operator()(
onst NodeType & sr
);It is important to remember that NodeType is a
tually an abstra
t des
ription: any type meeting s11n's S-Node
onventions will do. s11nlite uses, unsurprisingly, s11n::s11n_node as the referen
e implementation for theNodeType
on
ept.The astute reader may have noti
ed that the above two fun
tions have the same signature... almost. Their
onstness is di�erent, and C++ is smart enough to di�erentiate. The s11n interfa
e is designed su
h that it isvery di�
ult for
lients to have an environment where ambiguity is possible.These operators need not be virtual, but they may be so. Serializable proxy fun
tors, in parti
ular, are knownfor having non-virtual serialization operators, as are, of
ourse, monomorphi
 Serializable types.The truth is that s11n only requires that the argument be a
ompatible data node type and that the
onstnessmat
hes. s11n's
ore doesn't
are what fun
tion it
alls, as long as you tell it whi
h one to use - how to tells11n that is explained in se
tion 12.Trivia:When the de/serialize operators are implemented in terms of operator(), with the above-shownsignatures, a type is said to
onform to the Default Serializable Interfa
e.5.1 Serialize Operator
onventions
• If the type is polymorphi
, itmust set its
lass name in the node, e.g. using node_traits<NodeType>::
lass_name().This is
urrently the only 100% reliable way to get the proper
lass names of your Serializable subtypesfor use during during deserialization. (This is made
learer later via examples.) Monomorphi
 types
anbe reliably given a name by the framework, and normally no
lass name needs to be
alled for them (SAMdoes this - se
tion 17, and proxies sometimes re-set it). If this operator
alls a parent type's serializationoperator, the
lass name should be set after
alling the inherited operator, su
h that the subtype's
lassname is stored.
• Should save the obje
t's state to the destination node, presumably using the destination's publi
 APIand the s11n fun
tors/algorithms designed for su
h operations. State-saving may
ontinue re
ursively forSerializable
hild obje
ts.
• Returns true on su

ess, false on error. May throw or propagate arbitrary ex
eptions.5.2 Deserialize Operator
onventions
• Should restore the state of an obje
t via the node it is given, plus any sub-nodes, if needed. Staterestoration may
ontinue re
ursively for
olle
ting Serializable
hild obje
ts.
• The
ore library generally makes sure that nodes are passed to obje
ts of the types whi
h serialized thenodes, but users may �brute-for
e� any node into any Serializable if they wish to. It is not the job of thedeserialize operator to
he
k that it has re
eived a node for the proper type. It may do so, if it wishes,but this is out of line with s11n
onventions, and not re
ommended.
• The
ore library only
alls the deserialize operator one time per obje
t, but it is possible that
lient
odewill trigger it multiple times for a given obje
t. Thus any lists, pointers and whatnot should be
leanedup before restoring an obje
t's state, to avoid leaking resour
es or dupli
ating
ontainer entries. Moreinformation about this
an be found in se
tion 19.
• Returns true on su

ess, false on error. May throw or propagate arbitrary ex
eptions. If it throws, itshould ensure that it does not leak any resour
es allo
ated as a side-e�e
t of deserialization, in
ludingresour
es allo
ated by re
ursive deserialization. (This is not as di�
ult as it sounds: see se
tion 16.)5.3 Data Node
lass names (IMPORTANT!)Let us repeat this many times:while(! this->gets_the_point()) 30

std::
out << �The importan
e of
lass_name() in the s11n framework
annot be under-stated.\n�;(Don't be ashamed if your loop runs a little longer than average. It's a learning pro
ess.)
lass_name() is part of the node_traits interfa
e, and is used for getting and setting the
lass name of thetype of obje
t a node's data represents. This
lass name is stored in the meta-data of a node and is used for
lassloading the proper implementation types during deserialization. By
onvention the
lass_name() is thestring version of the C++
lass name, in
luding any namespa
e part but minus any quali�ers like pointernessand template parameters, e.g. �foo::bar::MyClass�. The library does not enfor
e this
onvention, and thereare indeed
ases where using aliases
an simplify things or make them more �exible. See the
lassloaderdo
umentation for hints on what aliasing
an potentially do for you.Client
ode must, unfortunately,
all
lass_name(), but the rules are very simple:
• Serializables (or their proxies) must set the target node's
lass_name() in their serialize operator (notthe deserialize operator), passing it the string name whi
h the
lient
ode will later expe
t to be able toload the
lass with. When using the default Serializable registration te
hniques, you should pass the
lassname de�ned in the S11N_TYPE_NAME ma
ro passed in to the registration superma
ro (se
tion 12.6).
• If a Serializable
lass inherits serializable behaviour from a parent type, the sub
lass must set
lass_name()after
alling the parent's implementation of the Serialize Operator to ensure the proper sub
lass type getsinto the node. Also, if the parent's operation fails, the
hild should normally immediately return false.Some algorithms parse data dire
tly from data nodes, irrespe
tive of the node's
lass_name(), and this isperfe
tly kosher. One example is the de/serialize_streamable_xxx() family of fun
tions: they use �raw�data nodes, to avoid a number of problems involved with registering proper
lass names for arbitrary
ontainers'
lassloaders.For more on
lass names, in
luding how to set them in a uniform way for arbitrary types, see se
tion ??.5.3.1 Example of setting a node's
lass nameHere's a sample whi
h shows you all you need to know about the bastard
hild of the s11n framework,
lass_name():Assume
lass A is a Serializable Interfa
e Type using the Default Serializable Interfa
e and B is a subtype ofA. In A's serialize (not DEserialize) operator we must write:s11n::node_traits<DataNodeType>::
lass_name(node, �A�);In B's we should do:if(! this->A::operator()(node))27 return false;s11n::node_traits<DataNodeType>::
lass_name(node, �B�);It is not stri
tly ne
essary that a subtype return false if the parent type fails to serialize, but it is a good ideaunless the subtype knows how to dete
t and re
over from the problem.Follow those simple rules and all will be well when it
omes to loading the proper type at deserialization time28.To extend the above example, after the node
ontains B's state, we
an do this:A * a = s11nlite::deserialize<A>(node);(Note that we
all deserialize<A>() with A be
ause that's the Interfa
e Type whi
h registered with s11n.)That
reates a (B*) and deserializes it using B's interfa
e. Why? Be
ause node's
lass_name() is �B�, and theA
lassloader will load a B obje
t when asked to (assuming it
an �nd B - if it
annot it will return zero/null,or possibly throw).Let's qui
kly look at two similar variants on the above whi
h are generally not
orre
t:B * a = s11nlite::deserialize<A>(node);27See se
tion 5.4 for why you should never dire
tly
all a Serializable's serialization API. This parti
ular
ase is one of two whi
hsimply
annot be avoided.28That is, assuming the subtypes are properly registered with the
lassloader.31

That won't work be
ause there is no impli
it
onversion possible from A to B. It will fail at
ompile time. Thatone is straightforward, but the details for this one are fairly intri
ate:B * a = s11nlite::deserialize(node);This will not fail to
ompile, but will probably not do what was expe
ted. In this example B is now the Interfa
eType for
lassloading/deserialization purposes, whi
h has subtle-yet-signi�
ant side-e�e
ts. For example, if B isnever registered with the B
lassloader then the user will probably be surprised when the above returns 0 insteadof a new, freshly-deserialized obje
t. If B is indeed registered with B's
lassloader, and B (as a standalone type)is re
ognized as a Serializable, then that
all would work as expe
ted: it would return a deserialized (B*).5.3.2 Using lo
al library support for
lass_name()Some heavily obje
t-oriented libraries, like Qt (www.trollte
h.
om), support a polymorphi

lassName() fun
-tion, or similar, to fet
h the proper, polymorphi

lass name of an obje
t. If your trees support this, takeadvantage of it : set the node's
lass name one time in the base serialization algorithm (your proxy or thebase-most implementation of your hierar
hy) if you
an get away with it! The sad news is, however, that thevast majority of us mortals must get by with doing this one part the hard way. :/ There are a
tually interestingma
ro/template-based ways to
at
h this for monomorphi
 types, but no 100% reliable way to
at
h them forpolymorphs has yet been dis
overed. (Hear my
ries, oh mighty C++ Standardization Commitee!)This approa
h is demonstrated in the s11n sample sour
e
ode, in sr
/
lient/sample/
lassname.
pp.5.4 Cooperating with other Serializable interfa
esDespite
ommon
oding pra
ti
e, and perhaps even
ommon sense,
lient Serializables should not - for reasonsof form and
ode reusability -
all their own interfa
es' de/serialize fun
tions dire
tly! Instead they should usethe various de/serialize() fun
tions. This ensures that interfa
e translation
an be done by s11n, allowingSerializables of di�erent an
estries and interfa
es to transparently interoperate. It also helps keep your
odemore portable to being used in other proje
ts whi
h support s11n. There are exa
tly three known
ases wherea
lient Serializable must
all its dire
t an
estor's de/serialize methods dire
tly, as opposed to through a proxy.The �rst two are
alling the parent implementation in their serialize and deserialize implementations. In thosetwo
ases it's perfe
tly a

eptable to do so, and in fa
t
ould not be done any other way. The �nal
ase is whenyou want or need to bypass the internal API marshalling. Any other usage
an be
onsidered �poor form� and�unportable.� If you �nd yourself dire
tly
alling a Serializable's de/serialize methods, see if you
an do it viathe
ore API instead (tip: you probably
an29).For example, instead of using this:myserializable->serialize(my_data_node); // NO! Poor form! Unportable!use one of these:s11nlite::serialize(my_data_node, myserializable); // YES! Friendly and portable!s11n::serialize(my_data_node, myserializable); // Fine!Note that there are extremely subtle di�eren
es in the
alling of the previous two fun
tions: the exa
t templatearguments they take are di�erent. In the
ase of monomorphi
 types C++'s automati
 argument-to-templatetype resolution su�
es to sele
t the proper types, so spe
ifying them via serialize<X> syntax is unne
essary.When serializing monomorphs, being expli
it should never be required. When using polymorphs, it may bene
essary to expli
itely give the base-most (interfa
e) type, so that the subtype's type is not a

identally sele
ted(whi
h will lead to no good). It is always safe to do so, in any
ase, and s11n's author en
ourages always beingexpli
it in this regard, to avoid potential
onfusion or subtle errors downstream.In terms of Style Points (se
tion 4.1),
alling a Serializable's API dire
tly, ex
ept where spe
i�
ally ne
essary,is immediately worth a good -1 SP or more, and may forever blemish one's reputation as a generi

oder. To beperfe
tly
lear, though,
alling the lo
al APIs dire
tly does not have any dire
t e�e
t on s11n. This
onventionis primarily to help ensure portability of serialization fun
tionality between disparate s11n-enabled types.29Alas, unless, you have some unusual needs, e.g. you need
ustomized re
ursive de/serialization to go around the internalmarshaling pro
ess. 32

5.5 Member template fun
tions as serialization operatorsIf a Serializable type implements template-based serialization operators, e.g.:template <typename NodeType> bool operator()(NodeType & dest)
onst;template <typename NodeType> bool operator()(
onst NodeType & sr
);and they use the s11n::node_traits<NodeType> interfa
e to query and manipulate the nodes, then theirSerialize methods will support any NodeType supported by s11n. Note that s11nlite hides the abstra
tness ofthe NodeType, so users wishing to do this will have to work more with the
ore fun
tions (whi
h essentiallyonly means using NodeType a lot more, e.g. fun
tioname<NodeType...>(...)).Using member template fun
tions has other impli
ations, and should be well-thought-out before it is imple-mented:
• May require in
luding (no pun intended) the implementation
ode in the header �le.
• Compilers do not
ompletely
he
k template fun
tions until they are
alled, so there might be a
ompile-error-in-waiting as
oders tweak bits without testing them (what, me? ;).
• Member template fun
tions
annot be virtual. (This is a C++ restri
tion, not s11n-imposed.)Despite those seeming limitations, experien
e suggests more and more that templated de/serialize operatorsgenerally o�ers more �exibility than non-templated. In the
ase of monomorphi
 types and proxies, there isalmost never a reason to not make these operators member templates, and there are several good reasons to doso:
• The
lass
an work with any Data Node type, instead of just, e.g. s11nlite::node_type.
• This is the only known e�e
tive way to proxy requests for
lass templates, e.g. STL
ontainers, as it allowsa single pair of fun
tions to handle de/serialization for a whole family of types. e.g. two fun
tions whi
h
an handle list<int>, list<double>, list<
har> ...
• Common C++ literature suggests that smart
ompilers
an eliminate at least some of the middle-man
ode in many
ommon fun
tor-related
onstru
ts.6 Type TraitsIn version 0.9.3 a Type Traits-based system was added to the framework to en
apsulate information about DataNode and Serializable interfa
es.The traits types live in the namespa
e s11n and are de
lared in the �le traits.hpp.In short, the traits types en
apsulate information about Data Node and Serializable types. Anyone familiarwith the STL's
har_traits<> type will �nd the s11n-related traits types similar.6.1 s11n::node_traits<NodeType>Header �le: traits.hppnode_traits en
apsulates the API of a given S-Node type. Using this approa
hit is possible to add new S-Nodetypes to the framework without requiring
lients to dire
tly know about their
on
rete types. All that is requiresis a spe
ialization of node_traits to a
t as the middleman between s11n and spe
i�
 node types.The
omplete API is do
umented in the node_traits API do
umentation.Note that it is
onsidered �poor form� to dire
tly use the API of a given Node type in
lient
ode - use the traitstype when possible.The default node_traits implementation works with s11n::s11n_node. Using node_traits to manipulatethese obje
ts will ensure that
lient
ode
an be used with either potential future node types.It might be interesting to note that s11n has been used su

essfully with at least three node types, so theswapping-out-node-type idea has shown to be more than a theoreti
al feature.33

6.2 s11n::s11n_traits<SerializableType>Header �le: traits.hpps11n_traits en
apsulates the following information about a Serializable Type...
• Serialization Fun
tor (typedef serialize_fun
tor) - a fun
tor type responsible for handling
alls toserialize() on behalf of SerializableType.
• Deserialization Fun
tor (typedef deserialize_fun
tor) - a fun
tor type responsible for handling
allsto deserialize() on behalf of SerializableType. This is normally the same type as the SerializationFun
tor, but sometimes it may be ne
essary or desirable to implement di�erent fun
tors for ea
h operation.
• Fa
tory Type (typedef fa
tory_type) - a fun
tor whi
h is responsible for
reating new instan
es of thetype (polymorphi
ally, if required). This allows
lients to easily install their own fa
tories for a given
lasshierar
hy, as opposed to being for
ed to use the default ones used by s11n.
• Cleanup Fun
tor (typedef
leanup_fun
tor) - added in 1.1.3 to allow some algorithms to make strongerguarantees in the fa
e of ex
eptions. This fun
tor is responsible for deallo
ating any otherwise unmanagedmemory whi
h might belong to a given type. This is used, e.g. to safely
lean up
ontainers
ontainingpointers even when the pointers are nested in sub-
ontainers.
• A single stati
 fun
tion,
lass_name(
onst serializable_type * HINT), added in version 1.1.0, allowsalgorithms to query Serializables for their
lass names in a more
oherent way than in previous s11nversions (but with essentially the same e�e
t and limitations vis-a-vis polymorphism).The interfa
e and its
onventions are do
umented fully in the s11n_traits API do
umentation.Note that this type has no data members. That said, a spe
i�
 traits spe
ialization is free to expand the type.For example, it may
ontain the implementation for the de/serialization operators and typedef itself to be thede/serialize_fun
tor types (yes, this has been done before and is perfe
tly kosher).The original intention of s11n_traits was to repla
e SAM (se
tion 17). As it turns out, SAM's (T*)-to-(T&) translation is fairly tri
ky to introdu
e via traits without an undue amount of extra
ode (potentially
lient-side). Sin
e SAM does this in only a few lines of
ode, as is zero-maintenan
e (sin
e early- or mid-2004year), the pointer/referen
e translation support will stay in SAM. SAM is, however, implemented in terms ofs11n_traits. That a
tually ends up giving us another layer we
an hook in to, anyway, whi
h gives us a bitmore �exibility in swapping out
omponents via spe
ialization.6.2.1
leanup_fun
torSee also se
tions 19 and 16, whi
h are
losely related to this material.This s11n_traits-spe
i�ed type was added in 1.1.3 after realizing that this
ategory of solution is the only wayfor the
ore library to avoid memory leaks in some parti
ular
ases involving failed deserialization.In very spe
i�
 terms, the job of the
leanup_fun
tor is to deallo
ate resour
es whi
h were dynami
allyallo
ated during deserialization. It is not intended to provide a general
leanup solution, only that ne
essary tofree up memory allo
ated during deserialization transa
tion.In short, this type is used to
lean up fa
tory-allo
ated obje
ts if a deserialization involving those obje
ts(dire
tly or downstream) fails.The
leanup fun
tor is not normally dire
tly used from
lient
ode unless the
lient has spe
ial needs in deserial-ization algorithms whi
h require spe
i�

lean up in the fa
e of failure. Even then, s11n::
leanup_serializable()is intended to a
t as a front-end to the
leanup fun
tor.Be
ause failed deserialization normally leaves an obje
t in an unde�ned state, we
annot simply delete su
hfa
tory-allo
ated obje
ts at will. The
at
h is, we don't know they're type, whi
h means we might delete amap<int,SomeT*>, in whi
h
ase a delete on the
ontainer would result in a leak of the SomeT members. Manyof the major s11n algorithms are ignorant of pointerness, and therefor don't even know if they're working withheap-allo
ated memory or not. They need a solution whi
h
an be used for heap- or sta
k-allo
ated obje
tsusing the same syntax, and so the
leanup_fun
tor was developed.For most
lient-side
lasses, those whi
h manage their own memory (i.e., delete owned pointers at destru
tion),deleting the obje
t on a failed deserialization is not a problem be
ause it
leans its resour
es when it destru
ts.Deleting
ontainers of unmanaged pointers is a severe problem, however.There is a parti
ular
ase for deserialization where the library
annot pass a newly-
reated obje
t ba
k to the
aller (i.e., deser fails and the lib has an obje
t it
reated). In that
ase, the library is for
ed to
hoose fromthree equally appalling
hoi
es: 34

1. Give ba
k the obje
t whi
h failed deserialization. This option is not possible if an ex
eption is thrown bythe deser op, and in any
ase has no way of telling the
aller that the obje
t is in an unde�ned state. Tothe
aller, it would seem as if all went well.2. Don't delete the obje
t, but give the user ba
k null (meaning error), admitting a blatant leak.3. Delete the obje
t, admitting a leak only if the obje
t
ontains unmanaged pointers.Neither solution is satisfa
tory, but earlier versions of s11n had some failure
ases whi
h would take the thirdroute (be
ause the impli
ations weren't re
ognized). Thank goodness deserialization failure at that level is sorare :/.The
leanup_fun
tor is expe
ted to install rules for handling similar
ases, su
h that on a deserializationfailure we
an internally
all:s11n_traits<SerializableT>::
leanup_fun
tor()(failedobje
t);Assuming that fun
tor does the right thing, that will
lean up re
ursively on any
ontained elements, and anyheap-allo
ated obje
ts will be deleted. This does not happen all by itself - it requires
onforming fun
tors to beinstalled for ea
h parti
ipating type. These are installed as part of the registration pro
ess, but spe
ial typeswill need some
ustom handling to install a proper
leaner-upper. Again, for PODs and
lasses whi
h deletetheir member pointers at destru
tion, this is not an issue.See the
lass template s11n::default_
leanup_fun
tor for the API and required interfa
e for spe
ializations.Clients are not required to use that
lass, but it is the default implementation, and
lients installing their owns11n_traits spe
ializations must ensure that their
leanup fun
tors behave as expe
ted. You
an �nd the vari-ous spe
ializations installed for maps, pairs, and lists by grepping proxy/*.hpp for default_
leanup_fun
tor.These might be useful starting points in writing your own, should you need to.s11n trivia: i delayed implementing
leanup_fun
tor for some weeks be
ause i was
on
erned aboutthe build-time overhead the new required types would add (that's a sore point for me). On a smalltest i did using six binaries and two DLLs, the entire build time was only in
reased by about twose
onds. The original prototype work for the approa
h was done almost a year before it was triedout here, but the larger impli
ations of adding it never hit me until i a
tually started adding it (after�nally realising that (T * deserialize<T>(node)) was inherently leaky on failure of
ontainers ofpointers).6.3 type_traits<T>Header �le: type_traits.hppVersion 1.1.2 introdu
ed type_traits<T>, whi
h is intended to be used by various algorithms to do thingslike stripping pointer and
onst quali�ers from types, and making
ompile-time de
isions based o� of su
hinformation. These types do not store any state and are not dire
tly related to serialization other than as autility to simplify some serialization
ode. There is nothing parti
ularly spe
ial about this implementation - itis roughly similar to type traits found in many libraries.7 Five-minute intro: PODs and STL
ontainerss11n's bread and butter is serializing PODs and STL
ontainers. This short demonstration shows you everythingyou need to know to serialize most of them.This whole se
tion assumes the following typedefs, de�ning some
lient-side types we want to serialize:typedef std::list<std::string> List;typedef std::map<int,List> ListMap;And assumes we have some obje
ts of those types:List mylist;ListMap mymap;It is irrelevant whether they are
lass members, globals, or whatever. As long as our
ode
an a

ess them, wedon't
are what s
ope they live in.Reminder: the s11n sour
e tree
omes with many ready-to-run examples demonstrating a variety of
ommonuse
ases: sr
/
lient/sample/*.?pp. 35

7.1 #in
lude ...First we need to in
lude the
ore framework:#in
lude <s11n.net/s11n/s11nlite.hpp>Next we need to in
lude a �proxy header� for ea
h type we will de/serialize. These headers �promote� our typesto Serializables (also
alled �registering� them).Assuming the above-mentioned typedefs, we will need the following headers:#in
lude <s11n.net/s11n/proxy/std/list.hpp>#in
lude <s11n.net/s11n/proxy/std/map.hpp>#in
lude <s11n.net/s11n/proxy/pod/int.hpp>#in
lude <s11n.net/s11n/proxy/pod/string.hpp>(Noti
e how the �lenames mat
h the names of the type we want to serialize. This is a
ommon
onvention.)This normally equate to one header per type we want to serialize. Those last two (pod/...) headers aren'tne
essary in some
ases, but we're going for the least-e�ort approa
h here, and the other approa
hes requireknowing more about s11n than this intro assumes you
urrently know. Put brie�y, we need those headersbe
ause the types
ontained within a serializable
ontainer must normally also be full-�edged Serializables, andwe do this by in
luding headers whi
h install
ode to promote those PODs to Serializables. This is also why we
an serialize ListMap,
ontaining obje
t of type List, as List is promoted to a Serializable via the in
lusion oflist.hpp. ListMap itself is promoted via map.hpp. The order of the in
ludes is insigni�
ant as long as all arein
luded by the time we a
tually try to de/serialize obje
ts of those type.Trivia: by �promotion� to a Serializable, we mean taking a type whi
h is not inherently Serializableand installing a proxy whi
h a
ts on its behalf to provide Serializable behaviour. This allows usto non-intrusively add serialization features to many 3rd-party or built-in types, like the standard
ontainers and built-in numeri
 types.7.2 SavingTo save our obje
ts, ea
h one to its own �le, is trivial:s11nlite::save(mylist, �list.s11n�);s11nlite::save(mymap, �map.s11n�);Saving two disparate obje
ts together inside one �le requires a small bit more e�ort:s11nlite::node_type node;s11nlite::serialize_subnode(node, �list�, mylist);s11nlite::serialize_subnode(node, �map�, mymap);s11nlite::save(node, �mystuff.s11n�);7.3 LoadingNow let's load our obje
ts:List * l = s11nlite::load_serializable<List>(�list.s11n�);ListMap * m = s11nlite::load_serializable<ListMap>(�map.s11n�);If the loading fails, the pointers will be null or an ex
eption may be thrown.We
an also deserialize dire
tly from the �le dire
tly into an existing List or ListMap obje
t:std::auto_ptr<s11nlite::node_type> node(s11nlite::load_node(�map.s11n�));s11nlite::deserialize<ListMap>(*node, mymap);36

Trivia: The expli
it <ListMap> quali�
ation on that deserialize()
all is not ne
essary for monomorphi
 types,but it's a good habit to be in be
ause it's often ne
essary to ensure proper s11n type lookup for polymorphs.If we had saved both obje
ts to one �le, as shown above, we
ould load them with the following:std::auto_ptr<s11nlite::node_type> node(s11nlite::load_node(�mystuff.s11n�));s11nlite::deserialize_subnode(*node, �list�, mylist);s11nlite::deserialize_subnode(*node, �map�, mymap);Noti
e how this time i left o� the template type quali�ers. Again, this is �ne for monomorphi
 types, but whenwriting generi
al de/serialization algorithms you should be in the habit of being expli
it about the types.7.4 Now the really easy way: mi
ro_api<>The obligatory header �le:#in
lude <s11n.net/s11n/mi
ro_api.hpp>Create a mi
ro:s11nlite::mi
ro_api<ListMap> mi
;Save/load to/from a �le or stream:mi
.save(mymap, �map.s11n�);ListMap * loaded = mi
.load(�map.s11n�);Those are overloaded to take i/ostream obje
ts.If you don't need a �le, don't bother with one. Instead, save it to a string bu�er, whi
h you
an then save to a�le, over a network, or to a
opy/paste bu�er:mi
.buffer(mymap);ListMap * loaded = mi
.load_buffer();The main advantage to the mi
ro_api
lass is the elimination of all other template parameters involved withde/serialization. Another advantage is that the
lient
ode never needs to know about the �node type�, whi
hvery is prevelant in the s11n[lite℄ APIs. The main limitation, however, is that ea
h instan
e of mi
ro_api istied to a single Serializable [Base℄ Type, so we
annot use the same mi
ro_api instan
e for both mylist andmymap. For many purposes, however, mi
ro is the absolutely simplest way to save/load Serializables.8 How to turn JoeAverageClass into a Serializable..."... doing something about a problem whi
h you do not understand is like trying to
lear away thedarkness by thrusting it aside with your hands."Alan W. WattsBefore we start: the s11n sour
e tree and web site have a number of examples for using the library. You maywant to
he
k one of those pla
es if this se
tion does not help you.In short,
reating a Serializable is normaly made up of these simple steps:1. Create the
lass, implementing a pair of de/serialize methods with the signatures expe
ted by s11n. Thede/serialize operators may be de�ned in a separate (proxy)
lass in many
ommon
ases.2. Tell s11n that your
lass exists, via registering it - see se
tion 12.If you are proxying a well-understood data stru
ture for whi
h a fun
tor already exists to de/serialize it, stepone disappears! An example would be proxying a std::list<int> or std::list<Serializable*> - those areboth handleable by the s11n::list::list_serializable_proxy
lass, provided that the
ontained types areSerializables. For a list of some useful proxy fun
tors see se
tion 13. In the
ase of proxying standard
ontainers,in
lude the appropriate registration header �le: 37

<s11n.net/s11n/proxy/std/list.hpp> // std::list<s11n.net/s11n/proxy/std/map.hpp> // std::map...If the
ontainer
ontains types whi
h must be proxied, those headers must also be in
luded. For example,proxying a map<int,string> requires the following in
ludes:<s11n.net/s11n/proxy/std/map.hpp><s11n.net/s11n/proxy/pod/int.hpp><s11n.net/s11n/proxy/pod/string.hpp>or an equivalent (there are other ways to do this). After that, any std::map
ontaining any
ombination of intsor strings
an be serialized via the
ore s11n API, in
luding map<string,int> or map<int,map<int,string>>,et
.8.1 Create a Serializable
lassAs you probably know by now, a Serializable's interfa
e is made up two de/serialize operators. Types withdi�erent interfa
es
an also be used - see the next se
tion. This library does not impose any inheriten
e require-ments nor fun
tion naming
onventions, but for this simple example we will take the approa
h of a serializableobje
t hierar
hy using the so-
alled Default Serializable Interfa
e, made up of two overloaded operator()s.Assume we've
reated these
lasses:
lass MyType {// serialize:virtual bool operator()(s11nlite::node_type & dest)
onst;// deserialize:virtual bool operator()(
onst s11nlite::node_type & sr
);// ... our fun
tions, et
.};
lass MySubType : publi
 MyType {// serialize:virtual bool operator()(s11nlite::node_type & dest)
onst;// deserialize:virtual bool operator()(
onst s11nlite::node_type & sr
);// ... our fun
tions, et
.};It is perfe
tly okay to make those operators member fun
tion templates, templatized on the NodeType, butkeep in mind that member fun
tion templates
annot be virtual. Implementing them as templates will makethe serialization operators
apable of a

epting any Data Node type supported by s11n, whi
h may have futuremaintenan
e bene�ts.If a Serializable will not be proxied, as the ones shown above are not, we must register it as being a Serializable:see se
tion 12 for how tell s11n about the
lass.8.2 Spe
ifying
ustom Serializable interfa
es for Interfa
eTypesIf MyType does not support the default interfa
e, but has, for example:[virtual℄ bool save()(data_node & dest)
onst;[virtual℄ bool load()(
onst data_node & sr
);The library
an still work with this. How to register the type as Serializable is des
ribed in se
tion 12.The same names may be used for both fun
tions, as long as the
onstness is su
h that they
an be properlytold apart by the
ompiler. 38

8.3 Spe
ifying Serializer Proxy fun
torsThis is one of s11n's most powerful features. With this, any type
an be made serializable without editing the
lass, provided it's API is su
h that the desired data
an be fet
hed and later restored. Almost all modernobje
ts (those worth serializing) are designed this way, so this is pra
ti
ally never an issue.Continuing the example from the previous se
tion, if MyType
annot be made Serializable - if you
an't, ordon't want to, edit the
ode - then s11n
an use a fun
tor to handle de/serialize
alls.First we
reate a proxy, whi
h is simply a stru
t or
lass with this interfa
e:Serialize:bool operator()(DataNodeType & dest,
onst SerializableType & sr
)
onst;Deserialize:bool operator()(
onst DataNodeType & sr
, SerializableType & dest)
onst;Notes about the operators:
• Yes, both fun
tions �should probably� be
onst in this
ase, for the widest fun
tor reusability, but if C++will let you get away with non-
onst operators in your
ontexts then s11n will a

ept them.
• The operators may be templates and/or the fun
tor may be a template. As long as C++'s type resolution
an �gure out what to do, it's legal.
• There are rare
ases where
alls
an be ambiguously for this interfa
e, so two fun
tors - one ea
h forde/serialization - may be ne
essary. (Trivia: in pra
ti
e this has only on
e been ne
essary, and wasprobably
aused by my mis-use of a non-
onst obje
t.)We must then register the proxy, as explained in se
tion 12.6. For MyType and its sub
lass, shown above, theregistration would look like this:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�// #define S11N_ABSTRACT_BASE // Only if MyType is abstra
t#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>#define S11N_TYPE MySubType#define S11N_TYPE_NAME �MySubType�#define S11N_BASE_TYPE MyType#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>It may be interesting to know...
• There
an be only one de/serialization handler for any given type, so you may not register both a baseand a proxy as being the handler for a given type, nor may you register two proxies as being the proxy fora single Interfa
e Type. Internally
haining
alls within proxies
an be used to get around the one-proxylimitation.
• Proxies may not normally save/load private data of the being-proxied type. In pra
ti
e is is rarely anissue, as most modern libraries provide adequate a

essors for their data. Classes designed su
h that theyonly possible way to store/restore their state is from internally should probably be redesigned to be morefriendly. As a base-line
omparison: every STL data stru
ture whi
h has been tried with this libraryhas the ne
essary API to support proxying, with the ex
eption of those with unusual traversal rules, likequeue and sta
k (those two
ould be done, but would require an extra
opy to be made, sin
e we maynot modify the sour
e obje
t during serialization).
• A proxy
lass does not need to register with a
lassloader. It may be registered - there is no harm in doingso, but there is never a need to30. Interfa
eType, on the other hand, must always be registered with the
lassloader.30Or, more
orre
tly, if you understand the highly unusual (and purely theoreti
al)
ase that would warrant su
h registration,then you'll understand why we oversimplify here. 39

• Proxies have a �xed interfa
e - the fun
tion names and signatures may not be
hanged or marshaled (asSerializable interfa
es
an), for the simple reason that the proxies are the ones doing the marshaling.
• In theory it may sometimes be ne
essary, due to
onst-vs-non-
onst ambiguity, to split a de/serializationfun
tor into two fun
tors. In pra
ti
e it's happened on
e, ever, ba
k in s11n 0.7.x.
• Proxies
an potentially
hain
alls to ea
h other together, whi
h allows some interesting possibilities andvery �exible
ontrol over de/serialization without tou
hing your
lasses. e.g. a data versioning system
ould be implemented as a proxy whi
h introdu
es or veri�es a version property and then passes on the
all to the lo
al Serializable interfa
e of the obje
t.
• Client
ode
an, e.g. use a ma
ro to de�ne whi
h proxy will be used for a given type (or group of types),allowing them to swit
h freely between serialization implementations on a per-type basis. This is how allof the �standard� proxies are implemented.i have a feeling there are a wide range of as-yes-undis
overed tri
ks for serialization proxies. s11n early-adopterGary Boone
alls this feature �s11n's most powerful,� and i
an't help but agree with him.9 How to turn JoeNonAverageClass into a Serializable..."May your hands always be busy. May your feet always be swift. May you have a strong foundationwhen the winds of
hanges shift."Bob DylanThe te
hniques
overed in the previous se
tion work for most
lasses, but are not suitable for some others.The following pro
ess works the same way for all types, as long as:
• It implements a serializable interfa
e we
an register with s11n.or:
• A fun
tor
an be registered whi
h will take over serilization for the type.It is best shown with an example, where we proxy a
lient-supplied type:#define S11N_TYPE MyType#define S11N_TYPE_NAME "MyType"// [de℄serialization fun
tor, only for proxied types:#define S11N_SERIALIZE_FUNCTOR MyTypeSerializationProxy// optional DEserialization fun
tor, defaults to S11N_SERIALIZE_FUNCTOR:// #define S11N_DESERIALIZE_FUNCTOR MyTypeDeserializationProxy#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>You're done!That's all that's ne
essary to take
omplete
ontrol over the internals of how s11n proxies a
lass.This pro
ess must be repeated for ea
h new type. The S11N_xxx ma
ros are all unset after the registrationheader is in
luded, so they may be immediately re-de�ned again in
lient
ode without having to unde�ne them�rst. Other proxy registration superma
ros may implement whatever interfa
e they like, with their own ma
rointerfa
es, allowing per-proxy-per-Serializable
ustomization via ma
ro toggles.The registration pro
ess, on the surfa
e, looks... well, awkward. Trust me, though: the bene�ts over of thissimple approa
h ma
ro- and
ode-generation-based solutions are tremendous, and have helped make someextremely tri
ky (or essentially impossible)
ases mu
h simpler to implement.Note that when registering template types, you also need to register their templatized types - they will be passedaround just like other Serializables, so if s11n doesn't know about them you will get
ompile errors. And keedin mind that, e.g. list<int> and list<int*> are di�erent types, and thus require di�erent spe
ializations.However, list<int> and (list<int>*) are equivalent for most of s11n's purposes.40

9.1 JoeAverageClass<>
lass templateThe s11n sour
e tree
ontains a demonstration of this: sr
/
lient/sample/templates.
ppOptionally, take a look at the standard proxies for the STL list/map
ontainers, in the s11n sour
e tree undersr
/proxy/reg_{list,map}_spe
ializations.hpp. These �les demonstrate the serialization proxying of
lasstemplates.If you have a
lass template and a proxy prepared for it, you
an register the template and its proxy withspe
ialized superma
ros dedi
ated to this purpose:Template type with one templatized parameter:#define S11N_TEMPLATE_TYPE MyT#define S11N_TEMPLATE_TYPE_NAME "MyT"#define S11N_TEMPLATE_TYPE_PROXY MyT_s11n#in
lude <s11n.net/s11n/proxy/reg_s11n_traits_template1.hpp>If MyT has two templatized parameters:#in
lude <s11n.net/s11n/proxy/reg_s11n_traits_template2.hpp>If you need to register a type with more than two parameters, you have at least two options:1. Copy the reg_s11n_traits_templateN.hpp �les into your tree and modify for more arguments. Pleasethen send me a
opy. :)2. Wait until i personally need the feature, then the next s11n release will have it.9.1.1 A
leanup fun
torThere is one additional
on
ern when serializing
lass templates: if those types do not own pointers they
ontain then you must supply a �
leanup fun
tor� so that the library knows how to deallo
ate your ob-je
ts safely if it needs to as a result of an ex
eption. To do this, simply provide a partial spe
ialization ofs11n::default_
leanup_fun
tor, as brie�y shown below and demonstrated in full in the sample sour
e
ode.Assuming MyT has two template parameters and is stru
tured like a std::pair, we
an implement a
leanupfun
tor like this:namespa
e s11n {template <typename T1, typename T2>stru
t default_
leanup_fun
tor< MyT<T1,T2> > {typedef MyT<T1,T2>
leaned_type;void operator()(
leaned_type &
) {// example, assuming MyT is pair-like:typedef typename ::s11n::type_traits<T1>::type _T1; // strip anypointertypedef typename ::s11n::type_traits<T2>::type _T2; // ditto::s11n::
leanup_serializable<_T1>(
.first);::s11n::
leanup_serializable<_T2>(
.se
ond);}};}Believe it or not, that works uniformly regardless of whether T1 and T2 are pointer types or not. We stripthe pointer part so that if T1 or T2 are pointers, then the
alls to
leanup_serializable() get referen
es topointers, whi
h makes it
apable of assigning those pointers to 0 after
leaning/deleting them.Remember that the
leanup pro
ess is essentially a no-op for value/referen
e types, but deallo
ates pointersalong the way. In the
ase of MyT<int,MyT<long,string *> >,
leaning up the outer-most MyT obje
t willinherently
limb down to
lean up the (string*) part of the nested MyT. The same thing will happen forMyT<A,B<C,M<K,V*>> >, provided all of the nested types are Serializables with a proper
leanup fun
tor installed.This ability is
riti
al to guaranteeing no leaks in the fa
e of ex
eptions.The registration �les for the standard
ontainers also
ontain
leanup fun
tor implementations whi
h you
anuse as a basis for writing your own. 41

10 Doing things with Serializables"...you aren't disappointed when using a DOS ma
hine; you know what to expe
t and are pleasantlysuprised if more happens."Larry AndersonOn
e you've got the Serializable �paperwork� out of the way, you're ready to implement the guts of yourserialization operators. In s11n this is normally extremely simple. Some of the many possibilities are shownbelow.In maintenan
e terms, the serialization operators are normally the only part of a Serializable whi
h must betou
hed as a
lass
hanges. The �paperwork� parts do not
hange unless things like the
lass name or itsparentage
hange [or you upgrade to a newer s11n whi
h breaks old APIs or
onventions℄.Remember that when using Data Nodes, it is strongly preferred to use the node_traits<NodeType> interfa
e,as opposed to the Node Type API dire
tly, as explained in se
tion 6.1. Client
ode may of
ourse use typedefsto simplify usage of node_traits.In the examples shown here we will assume the following typedef is in e�e
t:typedef s11n::node_traits<NodeType> NTR;10.1 Setting �simple� propertiesAny data whi
h
an be represented as a string key/value pair
an be stored in a data node as a property:NTR::set(node, �my_property�, my_value);set() is a fun
tion template and a

epts a string as a key and any Streamable Type as a valueThere are
ases involving ambiguity between ints/bools/
hars whi
h may require that the
lient expl
itelyspe
ify the property's type as a template parameter:NTR::set<int>(int, �my_number�, mynum);NTR::set<bool>(node, �my_number�, mybool);Ea
h property within a node is unique: setting a property will overwrite any other property with the samename.It must be re-iterated that set() only works when setting values whi
h are Streamable Types. That is, typeswhi
h support two
omplementary ostream<< and istream>> operators. To save Serializable
hildren use theserialize() family of fun
tions.10.2 Getting property valuesGetting properties from nodes is also very simple. In the abstra
t, it looks like:T val = NTR::get(node, �property_name�, some_T_obje
t);e.g. this->name(NTR::get(node, �name�, this->name()));What this is saying is:set this obje
t's name to the value of the 'name' property of node. If 'name' is not set in node, or
annot be
onverted to a string via i/o streams, then use the
urrent value of this->name().That sounds like like a mouthful, but it's very simple: when
alling get() you must spe
ify a se
ond parameter,whi
h must be of the same type as the return result. This se
ond parameter serves several purposes:
• A default value: a known-good (or known-bad!) value to use in
ase the supplied obje
t
ould not be
onverted. 42

• An error value: The library
annot know what is an is not a valid value for su
h
onversions, so the
lient may supply one here and
ompare it to what they expe
t. e.g. data versioning
he
ks
ould beimplemented this way.
• It tells get() what type of obje
t it returns, without you having to spe
ify get<ReturnType>(�mykey�).As with set(), get() is a family of overloaded/templated fun
tions, and there are
ases where, e.g. int andbools may
ause ambiguity at
ompile time. See the set() do
umentat, above, for the proper workaround.As with set(), get() only works with Streamable Types. To restore Serializable
hildren, use the deserialize()family of fun
tions.You
an also use NTR::is_set(node,�property�) to
he
k for existen
e of a property.10.2.1 Simple property error
he
kingHere's how one might implement simple error
he
king for properties:int foo = NTR::get(node, �meaning_of_life�, -1);if(-1 == foo) { ... error: we all know it's really 42 ... }std::string bar = NTR::get(node, �name�, std::string());if(bar.empty()) { ... error ... }if(! NTR::is_set(node,�important�)) { ... error ... }Keep in mind that s11n
annot know what values are a

eptable for a given property, thus it
an make noassumptions about what values might be invalid or error values.Theoreti
ally, installing a Serializable Proxy for a type whi
h does su
h
he
ks and then passes the
all on tothe obje
t's lo
al Serializable Interfa
e is one way to keep this type of
ode out of Serializable
lasses.10.2.2 Saving
ustom Streamable TypesThis is a no-brainer. Streamable Types are supported using the same get/set interfa
e as all other �simple�properties. Assume we have a Geometry type whi
h support i/ostream operators. In order to save it we mustsimply
all:NTR::set(node, �geom�, this->geometry());and to load it:this->geometry(NTR::get(node, �geom�, this->geometry()));or maybe:this->geometry(NTR::get(node, �geom�, Geometry()));10.3 Finding or adding
hild nodes to a nodeUse the s11n::find_
hild_by_name() and s11n::find_
hildren_by_name() fun
tions to sear
h for
hildnodes within a given node. Alternately, use node_traits<NodeType>::
hildren() fun
tion to get the list ofit's
hildren, and sear
h for them using
riteria of your
hoi
e.Use s11n::
reate_
hild() to
reate a
hild and add it to a parent in one step. Alternately, add
hildren usingnode_traits<NodeType>::
hildren(node).push_ba
k().

43

10.4 Serializing Streamable ContainersStreamable Containers are, in this
ontext,
ontainers for whi
h all stored types are Streamable Types (see4.1). s11n
an save, load, and
onvert su
h types with unpre
edented ease.Normally
ontainers are stored as sub-nodes of a Serializable's data node, thus saving them looks like:s11n::map::serialize_streamable_map(node, �subnode_name�, my_map);To use this fun
tion dire
tly on a target node, without an intervening subnode, use the two-argument versionwithout the subnode name. Be warned that none of the serialize_xxx() fun
tions are meant to be
alledrepeatedly or
olle
tively on the same data node
ontainer. That is, ea
h one expe
ts to have a �private� nodein whi
h to save its data, just as a full-�edged Serializable obje
t's node would. Violating this may result inmangled
ontent in your data nodes, or possibly an ex
eption, depending on the algo (in 1.1.3+ most algosthrow in this
ase).Loading a map requires exa
tly two more
hara
ters of work:s11n::map::deserialize_streamable_map(node, �subnode_name�, my_map);(Can you guess whi
h two
hara
ters
hanged? ;)If you want to de/serialize a std::list or std::ve
tor of Streamable Types, use the de/serialize_streamable_list()variants instead:s11n::list::serialize_streamable_list(targetnode, �subnodename�, my_list);Note that s11n does not store the exa
t type information for data serialized this way, whi
h makes it possibleto
onvert, e.g. a std::list<int> into a std::ve
tor<double*>, via serialization. The wider impli
ation isthat any list- or map-like types
an be served by these simple fun
tions (all of them are implemented in 6-8lines of
ode, not
ounting typedefs). We a
tually rely on C++'s strong typing to do the hardest parts of typedetermination, and we don't a
tually need the type name in some
ases involving monomorphi
 Serializables.More spe
i�
ally, whenever no
lassloading operation is required, the
lass name ist uns egal31.Note that these fun
tions only work when the
ontained types are Streamables. If they are not, use thes11n::list::serialize_list() and s11n::map::serialize_map() family of fun
tions. Note that thosefun
tions also work for Streamable types as long as a proxy has been installed for those Streamables (seeproxy/pod/*.hpp for examples).10.4.1 Tri
k: �
asting� list or map typesIf you have lists or maps whi
h are similar, but not exa
tly of the same types, s11n
an a
t as a middleman to
onvert them for you. Assume we have the following maps:map<int,int> imap;map<double,double> dmap;We
an
onvert imap to dmap like this:data_node n;s11n::map::serialize_streamable_map(n, imap);s11n::map::deserialize_streamable_map(n, dmap);In fa
t, that doesn't require that any of the involved types be registered Serializables, provided the algorithms'other requirements are met.For Serializables we have a simpler option:s11nlite::s11n_
ast(imap, dmap);This requires that proxies be in pla
e for the maps as well as the
ontained types, int and double, whi
h we
an install with:31German for �frankly, my dear, we don't give a damn.� 44

#in
lude <s11n.net/s11n/proxy/std/map.hpp>#in
lude <s11n.net/s11n/proxy/pod/int.hpp>#in
lude <s11n.net/s11n/proxy/pod/double.hpp>Doing the opposite
onversion via s11n_
ast() �should� also work, but would be a potentially bad idea be
auseany post-de
imal data of the doubles would be lost upon
onversion to int. The
ompiler
annot warn youabout loss of pre
ision in su
h a
ase be
ause the
onversions happen via lexi
al
asting.Similar
onversions will work, for example, for
onverting a std::list to a std::ve
tor. For example:#in
lude <s11n.net/s11n/proxy/std/list.hpp>#in
lude <s11n.net/s11n/proxy/std/ve
tor.hpp>#in
lude <s11n.net/s11n/proxy/pod/int.hpp>...list<int> ilist;ve
tor<int *> ive
;// ... populate ilist ...s11nlite::s11n_
ast(ilist, ive
);That's all there is to it. The library takes
are of allo
ating the (int*)
hildren of the ve
tor. The
lient isresponsible for deallo
ating them, just as one would when using any �normal� STL
ontainer of pointers. Onesimple way to deallo
ate them:s11n::
leanup_serializable(ive
);That works even if the ve
tor
ontains
ontainers whi
h
ontain
ontainers whi
h themselves
ontain more
ontainers of pointers.10.5 De/serializing Serializable obje
tsIn terms of the
lient interfa
e, saving and restoring Serializable obje
ts is slightly more
omplex than workingwith basi
 types (like PODs), primarily be
ause we must deal with more type information.10.5.1 Individual Serializable obje
tsThe following C++
ode will save any given Serializable obje
t to a �le:s11nlite::save<MyType>(myobje
t, �somefile.whatever�);this will save it into a target s11nlite::node_type obje
t:s11nlite::serialize<MyType>(mynode, myobje
t);The node
ould then be saved via an overloaded form of save().There are several ways to save a �le, depending on what Serializer you want to use. s11nlite uses only oneSerializer by default, so we'll skip that subje
t for now (tips: see s11nlite::serializer_
lass() for a wayto override whi
h Serializer it uses).Loading an obje
t is fairly straightforward. The simplest way is:Interfa
eType * obj = s11nlite::load_serializable<Interfa
eType>(�somefile.s11n�);Interfa
eType must be a type registered with the appropriate
lassloader (i.e., the Interfa
eType
lassloader)and must of
ourse be a Serializable type. To illustrate that �rst point more
learly, the following are not
orre
t :SubTypeOfInterfa
eType* obj = s11nlite::load_serializable<Interfa
eType>(�somefile.s11n�); 45

Will not
ompile: there is no impli
it
onversion from Interfa
eType to a subtype of that type.Interfa
eType* obj = s11nlite::load_serializable<SubTypeOfInterfa
eType>(�somefile.s11n�);Will
ompile but will not do what is expe
ted, be
ause it's trying to use a di�erent
lassloader and APImarshaller than Interfa
eType.It is
riti
al that you use the base-most type whi
h was registered with s11n, or you will almost
ertainly notget ba
k an obje
t from any deserialize-related fun
tion.If you have a non-pointer type whi
h must be populated from a �le, it
an be deserialized by getting anintermediary data node, by using something like the following:s11nlite::node_type * n = s11nlite::load_node(�somefile.s11n�);or:
onst s11nlite::node_type * n = s11n::find_
hild_by_name(parent_node, �subnode_name�);Then, assuming you got a node:bool worked = s11nlite::deserialize(*n, myobje
t);delete(n); // NOT if you got it from another node! It belongs to the parent node!Note, however, that if the deserialize operation fails then myobje
t might be in an unde�ned or unusable state.In pra
ti
e this is extremely rare, but it may happen, and
lient
ode may need to be able to deal with thispossibility.10.5.2 Containers of SerializablesThis subse
tion exists only to avoid someone asking, �how do I serialize a list<T> or list<T*>?�Here you go:#in
lude <s11n.net/s11n/proxy/listish.hpp> // list-related algos#in
lude <s11n.net/s11n/proxy/std/list.hpp> // std::list<T> proxy registration...s11n::serialize(target_node, sr
_list);...s11n::deserialize(sr
_node, tgt_list);// or:ListType * tgt_list = s11n::deserialize<ListType>(sr
_node);The same goes for maps, ex
ept that you should in
lude mapish.hpp and std/map.hpp. Note that �list�algorithms a
tually work with std::list, ve
tor, set and multiset, but that proxies for ea
h general listtype must be installed separately, by in
luding one of std/{list,set,ve
tor,...}.hpp. The map algorithmswork for std::map and multimap and are proxied via the headers std/{multimap,map}.hpp.So what is di�erent from the above
ode and de/serialization of any other Serializable type? Nothing. That'spart of what makes s11n so easy to use -
lients only really need to remember a small handful of fun
tions.10.5.3 �Brute for
e� deserializationAny data node
an be de/serialized into any given Serializable, provided the Serializable supports a deserializeoperator for that node type. The main impli
ation of this is that
lients may for
e-feed any given node into anyobje
t, regardless of the meta-data type of the data node (i.e., it's
lass_name()) and the Serializable's type.This feature
an be used and abused in a number of ways, and one of the most
ommon uses is to deserializenon-pointer Serializables:if(
onst data_node *
h = s11n::find_
hild_by_name(sr
node, �fred�)) {46

if(! s11nlite::deserialize<MyType>(*
h, myobje
t)) {... error ...}}The notable down-side of brute-for
e deserialization, however, is this: if the deserialize operation fails thenmyobje
t may be in an unde�ned state, depending on the algorithm used to deserialize it. Handling of this is(a) very
lient-spe
i�
, and (b) in pra
ti
e it is very rare for a deserialization to fail at this level. Brute for
edeserialization spe
i�
ally opens up the possibility of feeding any data to any deserialization algorithm, whi
hof
ourse means that for
orre
t results you must use mat
hing data and algorithms.11 Walk-throughs: imlementing Serializable
lassesThis se
tion
ontains some example of implementing real-world-style Serializables. It is expe
ted that thisse
tion will grow as ex
eptionally illustrative samples are developed or submitted to the proje
t.There are several
omplete, do
umented examples in the sour
e tree under sr
/
lient/..., and the s11n website has several. Both sour
es go well beyond what is presented here.11.1 Sample #1: Read this before trying to
ode a Serializable!Here we show the
ode ne
essary to save an imaginary
lient-side Serializable
lass, MyType.The
ode presented here
ould be implemented either in a Serializable itself or a in a proxy, as appropriate.The
ode is the same, either way.In this example we are not going to proxy any
lasses, but instead we will use various algorithms to store them.The end e�e
t is identi
al, though the internals of ea
h di�er slightly.11.1.1 The dataLet's assume that MyType has this rather ugly mix of internal data we would like to save:std::map<int,std::string> istrmap;std::map<double,std::string> dstrmap;std::list<std::string> slist;std::list<MyType *>
hilds;size_t m_id;Looks bad, doesn't it? Don't worry - this is a trivial
ase for s11n.11.1.2 The #in
ludesWe will need to in
lude the following headers for our parti
ular
ase:#in
lude <s11n.net/s11n/s11nlite.hpp>#in
lude <s11n.net/s11n/proxy/std/list.hpp> // list proxy#in
lude <s11n.net/s11n/proxy/std/map.hpp> // map proxy#in
lude <s11n.net/s11n/proxy/pod/int.hpp> // see below#in
lude <s11n.net/s11n/proxy/pod/double.hpp> // see below#in
lude <s11n.net/s11n/proxy/pod/string.hpp> // see belowThe pod/xxx.hpp headers promote the given PODs to �rst-
lass Serializables. This is not ne
essary, nordesireable, for all
ases, but simpli�es this example. 47

11.1.3 The serialize operatorSaving member data normally requires one line of
ode per member, as shown here:bool operator()(s11nlite::node_type & node)
onst{ typedef s11nlite::node_traits TR;TR::
lass_name(node, "MyType"); //
riti
al, but see below!TR::set(node, "id", m_id);using namespa
e s11nlite;serialize_subnode(node, "string_list", slist);serialize_subnode(node, "
hildren",
hilds);serialize_subnode(node, "int_to_str_map", istrmap);serialize_subnode(node, "dbl_to_str_map", dstrmap);return true;}The
lass name for a registered monomorphi
 Serializable types
an be fet
hed by
alling ::
lassname<T>(). Infa
t, SAM (se
tion 17) does this for you, and the
lass_name()
all
an te
hni
ally be left out for monomorphi
types. It is probably a good idea to go ahead and in
lude it, for the sake of
larity and pedanti

orre
tness.If we had not promoted our PODs to �rst-
lass serializables, using pod/xxx.hpp, we
ould still serialize ourdata, but would then need
reate registrations to map them to spe
i�
 proxies or
all the desired algorithmsoutselves. Both are desireable under parti
ular
ir
umstan
es. A sample of how that might be done:s11n::list::serialize_streamable_list(node, "string_list", slist);s11n::map::serialize_streamable_map(node, "int_to_str_map", istrmap);Those algorithms produ
e mu
h more
ompa
t output than the default proxies, but are only useful when alltypes
ontained in the
ontainer are i/ostreamable.11.1.4 The deserialize operatorThe deserialize implementation is almost a mirror-image of the serialize implementation, plus a
ouple lines of
lient-dependent administrative
ode (not always ne
essary, as explained below):bool operator()(
onst s11nlite::node_type & node){ //////////////////// avoid dupli
ate entries in our lists:istrmap.
lear();dstrmap.
lear();slist.
lear();s11n::
leanup_serializable(this->
hilds);//////////////////// now get our data:typedef s11nlite::node_traits TR;this->m_id = TR::get(node, "id", m_id);using namespa
e s11nlite;deserialize_subnode(node, "string_list", slist);deserialize_subnode(node, "
hildren",
hilds);deserialize_subnode(node, "int_to_str_map", istrmap);deserialize_subnode(node, "dbl_to_str_map", dstrmap);// ^^^ If we previously used serialize_streamable_xxx() we would// need to use deserialize_streamable_xxx() to retrieve the data.return true; 48

}A note about
leaning up before deserialization:In pra
ti
e these
he
ks are normally not ne
essary. s11n never, in the normal line of duty, dire
tly
alls thedeserialize operator more than one time for any given Serializable: it
alls the operator one time dire
tly af-ter instantiating the obje
t. It is
on
eivable, however, that
lient
ode will initiate a se
ond (or subsequent)deserialize for a live obje
t, in whi
h
ase we need to avoid the possibility of appending to our
urrent proper-ties/
hildren, and in the above example we avoid that problem by
learing out all
hildren and lists/maps �rst.In pra
ti
e su
h
ases tend to only happen in test/debug
ode, not in real
lient use
ases. The possibility ofmultiple-deserialization is there, and it is potentially ugly, so it is prudent to add the extra few lines of
odene
essary to make sure deserialization starts in a
lean environment.11.1.5 Serializable/proxy registrationThe interfa
e must now be registered with s11n, so that it knows how to inter
ept requests on that type's behalf:for full details see se
tion 12, and for a qui
k example see 9.11.1.6 Done! Your obje
t is now a Serializable Type!That's all there is to it. Now MyType will work with any s11n API whi
h work with Serializables. For example:s11nlite::save(myobje
t, std::
out);will dump our MyObje
t to
out via s11n serialization. This will load it from a �le:MyType * obj = s11nlite::load_serializable<MyType>(�filename.s11n�);(Keep in mind that the obje
t you get ba
k might a
tually be some an
estor of MyType - this operation is polymorphi
 if MyTypeis.)Now that wasn't so tough, was it?A very signi�
ant property of MyType is this:MyType is now inherently serializable by any
ode whi
h uses s11nlite, regardless of the
ode's lo
alSerialization API! s11n takes
are of the API translation between the various lo
al APIs.Weird, eh? Let's take a moment to day-dream:Consider for a moment the outrageous possibility that 746 C++ developers worldwide implement s11n-
ompatibleSerializable support for their obje
ts. Aside from having a
onvenient serialization library at their disposal (imean, obviously ;), those 746 developers now have 100% transparent a

ess to ea
h others' serialization
apa-bilities, without having to know anything but the other libraries' base-most types.Now
onsider for a moment the impli
ations of your
lasses being in that equation...Let us toke on that thought for a moment, absorbing the impli
ations.Well, i think it's pretty
ool, anyway.11.2 Gary's
odeOne of s11n's early-adopters, Gary Boone,
onta
ted me in early 2004 about how to go about adding s11n supportto his proje
t. For starters, he had a simple stru
ture (des
ribed below). On the surfa
e, the problem appearsto be non-trivial, but this is only when viewing the
ode through the lense of traditional C++ te
hniques...Let us repeat the s11n mantra (well, one of several32):s11n is here to Save Our Data , man!32Trivia note: The banner label on the s11n web site rotates through s11n's list of o�
ial mantra, and new mantra are added asthey ar dis
overed. Submit your s11n mantra or
lever quip and it will show up on the s11n web site. :)49

The type of problem Gary is trying to solve here is s11n's bread and butter, as his solution will show us in a fewmoments.After getting over the initial learning hurdles - admittedly, s11n's abstra
tness
an be a signi�
ant hindernessin understanding it - he got it running and sent me an email, whi
h i've reprodu
ed below with his permission.i must say, it gives me great pleasure to post Gary's text here. Through his mails i have witnessed the dawning ofhis ex
itement as he
omes to understanding the general utility of s11n, and that is one of the greatest rewardsi, as s11n's author,
an possibly get. Reading his mails
ertainly made me feel good, anyway :).Gary's email address has been removed from these pages at his request. If, after reading his examples, you'reintested in
onta
ting Gary, please send me a mail saying so and i will happily forward it on to him.The
ode below has been updated from Gary's original to a

omodate
hanges in the
ore library, but it isessentially the same as his original post.In some pla
es i have added des
riptive or ba
kground information, marked like so:[editorial: ℄11.2.1 Gary's Revelation[From: Gary Boone, 12 Mar
h 2004℄... Atta
hed is my solution ('map_of_stru
ts.*'). Basi
ally, I followed your suggestion of writing theve
tor elements as node
hildren using a for_ea
h & fun
tor....I like the idea of not having to
hange any of my obje
ts, but instead use fun
tors to tell s11n howto serialize them....Dude, it works!! That's amazing! That's huge, allowing you to
ode serialization into your proje
tswithout even tou
hing other people's
ode in distributed proje
ts. It means you
an experimentwith the library without having to ha
k/unha
k your primary
odebase.Stephan, you have to make this
learer in the do
s! It should be example #1:[editorial: i feel
ompelled to in
rease the font size of that last part by a few points, be
ause i had the distin
timpression, while reading it, that Gary was over�owing with amazement at this realization, just as i �rst didwhen the impli
ations of the ar
hte
ture started to tri
kle in. :) That said, the full impli
ations and limits ofthe ar
hite
ture not yet fully understood, and probably won't be in the forseeable future - i honestly believe itto be that �exible33.℄...One of the most ex
iting aspe
ts of s11n is that you may not have to
hange any of your obje
ts touse it! For example, suppose you had a stru
t:stru
t elem_t {int index;double value;elem_t(void) : index(-1), value(0.0) {}elem_t(int i, double v) : index(i), value(v) {}};You
an serialize it without tou
hing it! Just add this proxy fun
tor so s11n knows how to serializeand deserialize it:// Define a fun
tor for serialization/deserialization// of elem_t stru
ts:stru
t elem_t_s11n34 {33That text was written some time in the 0.7 or 0.8
y
le, early 2004 (today == 24 Sept 2005). i still believe that (a) the fulllimits and impli
ations of the library are not yet fully understood and (b) it really is that �exible. :)34Gary is
redited with
oming up with the MyType_s11n naming s
heme, and it now appears regularly in other s11n
lienttrees. 50

// note: no inheriten
e requirements, but// polymorphism is permitted./*************************************// a so-
alled �serialization operator�:// This operator stores sr
's state into the dest data
ontainer.// Note that the SOURCE Serializable is
onst, while the TARGET// data node obje
t is not.*************************************/template <typename NodeType>bool operator()(NodeType & dest,
onst elem_t & sr
)
onst35 {typedef s11n::node_traits<NodeType> TR;TR::
lass_name(dest, "elem_t");TR::set(dest, "i", sr
.index);TR::set(dest, "v", sr
.value);return true;}/*************************************// a �deserialization operator�:// This operator restores dest's state from// the sr
 data
ontainer.// Note that the SOURCE node is
onst, while// the TARGET Serializable obje
t is not.*************************************/template <typename NodeType>bool operator()(
onst NodeType & sr
, elem_t & dest)
onst {typedef s11n::node_traits<NodeType> TR;dest.index = TR::get(sr
, "i", -1);dest.value = TR::get(sr
, "v", 0.0);return true;}};[editorial: while the similar-signatured overloads of operator() may seem
onfusing or annoying at �rst, withonly a little pra
ti
e they will be
ome se
ond nature, and the symmetry this approa
h adds to the API improvesit's overall ease-of-use. Note the bold text in their des
riptions, above, form simple pneumoni
s to rememberwhi
h operator does what.The
onstness of the arguments ensures that they
annot normally (i.e., via standard s11n operations) be
alledambiguously. That said, i have seen one
ase of a proxy fun
tor (not Serializable) for whi
h
onst/non-
onst-ambiguity was a problem, whi
h is why proxies may optionally be implemented in terms of two obje
ts: oneSerializeFun
tor and a
orresponding DeserializeFun
tor, ea
h of whi
h must implement their
orrespondinghalves of the de/serialize equation. Often it is very useful to �rst implement de/serialize algorithms (i.e. asfun
tions) and then later supply the 8-line wrapper fun
tor
lass whi
h forwards the
alls to the algorithms.Several internal proxies do exa
tly this, and it gives
lient
ode two di�erent ways of doing the same thing, atthe
ost of an extra
ouple minutes of
oding the proxy wrapper around an existing algoritm. As a generalrule, algorithms are slightly easier to test than proxies early on in development, as they are missing one level ofindire
tion whi
h proxies logi
ally bring along.Ba
k to you, Gary...℄The �nal step is to tell s11n about the asso
iation between the proxy and it's delegatee:#define S11N_TYPE elem_t#define S11N_TYPE_NAME �elem_t�#define S11N_SERIALIZE_FUNCTOR elem_t_s11n#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>35Whether or not a fun
tor has
onst or non-
onst operator()s is largely a matter of what the fun
tor is used for. The
onstnessof the arguments is set - it may not deviate from that shown here. The
onstness of the operator itself is not de�ned by s11n
onventions. 51

[editorial: After this registration, elem_t_s11n is now the o�
ial delegate for all de/serialize operations involv-ing elem_t. Any time a de/serialize operation involves an elem_t or (elem_t *) s11n will dire
t the
all toelem_t_s11n. The only way for a
lient to bypass this proxying is to do the most dispi
able, unthinkable a
t inall of libs11n: passing the node to the Serializable dire
tly using the Serializable's API! See se
tion 5.4 for anexplanation of why taking su
h an a
tion is
onsidered Poor Form!℄You're done. Now you
an serialize it as easily as:elem_t e(2, 34.5);s11nlite::save(e, std::
out);Deserializing from a �le or stream is just as straightforward:elem_t * e = s11nlite::load_serializable<elem_t>("somefile.elem");or:s11nlite::data_node * node = s11nlite::load_node("somefile.elem");elem_t e;bool worked = s11nlite::deserialize(*node, e);delete node;[editorial: that last example basi
ally �
annot fail� unless elem_t's deserialize implementation wants it to, e.g. ifit gets out-of-range/missing data and de
ides to
omplain by returning false. What might
ause missing data ina node? That's exa
tly what would e�e
tively happen if you �brute-for
e� a node populated from a non-elem_tsour
e into elem_t. Consider: the node will probably not be laid out the same internally (di�erent propertynames, for example), and if it is laid out the same, there are still no guarantees su
h an operation is symanti
allyvalid for elem_t. Obviously, handling su
h
ases is 100%
lient-spe
i�
, and must be analyzed on a
ase-by-
asebasis. In pra
ti
e this problem is mainly theoreti
al/a
ademi
 in nature. Consider: frameworks understandtheir own data models, and don't go passing around invalid data to ea
h other. s11n's stri
t
lassloading s
hememeans it
annot inherently do su
h things, so that type of �use and abuse� ne
essarily
omes from
lient-side
ode. Again: this never happens. Jesus, i'm so pedanti
 sometimes...℄...[End Gary's mail℄Gary hit it right on the head. The above
ode is exa
tly in line with what s11n is designed to do, and his �rstgo at a proxy was implemented exa
tly
orre
tly. Kudos, Gary!Note that with the various
ontainer proxies whi
h ship with s11n, Gary's elem_t type
an take part in
ontainerserialization, su
h as in a map<string,elem_t>or list<elem_t>. There is no separate �serialize
ontainer of elem_t� operation, as the generi
 list/mapalgorithms inherently handle any and all Serializables:typedef std::map<std::string,elem_t> MapT;MapT mymap;... populate mymap ...s11nlite::save(mymap, �myfile.s11n�);12 s11n registration & �superma
ros� (IMPORTANT)As of version 0.8.0, s11n uses a new
lass registration pro
ess, providing a single interfa
e for registering anytypes, and handling all
lassloader registration.Histori
ally, ma
ros have been used to handle registration, but these have a huge number of limitations. Wenow have a new pro
ess whi
h, while a tad more verbose, is far, far superior is many ways (the only down-sidebeing it's verbosity). i like to
all them...12.1 �Superma
ros�s11n uses generi
 �superma
ros� to register anything and everything. A superma
ro is a header �le whi
h iswritten to work like a C++ ma
ro, whi
h essentially means that it is designed to be passed parameters andin
luded, potentially repeatedly.Use of a superma
ro looks something like this: 52

#define MYARG1 �some string�#define MYARG2 foo::AType#in
lude �my_superma
ro.hpp�By
onvention, and for
lient
onvenien
e, the superma
ro is responsible for unsetting any arguments it expe
tsafter it is done with them, so
lient
ode may repeatedly
all the ma
ro without #undef'ing them.Sample:#define S11N_TYPE MyType#define S11N_TYPE_NAME "MyType"#define S11N_SERIALIZE_FUNCTOR MyType_s11n#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>#define S11N_TYPE MyOtherType#define S11N_TYPE_NAME "MyOtherType"#define S11N_SERIALIZE_FUNCTOR MyOtherType_s11n#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>While the now-outmoded registration ma
ros are (barely) suitable for many non-templates-based
ases, super-ma
ros allow some - er... TONS - of features whi
h the simpler ma
ros simply
annot
ome
lose to providing.For example:
• A superma
ro
an handle almost any
ase, using a single - yet extendable - interfa
e, and more
omplexvariants
an implement their own superma
ro �le.
• Superma
ros
an do arbitrary tasks, like
lassloader registration, freeing
lients of this task.
• Arbitrary new sets of superma
ros
an be introdu
ed at any time without impa
ting existing
ode, whi
hmeans, for example,
lient
ode
an use a #define to swti
h between interfa
es by in
luding di�erentregistration ma
ros.
• ODR violations
an be more easily eliminated (in theory,
ompletely), as ea
h superma
ro is free toimplement it's internals however it wants. e.g. if it uses a
ustom
lassloader registration te
hnique it
annot
ollide with those used by other registerers.
• As they are implemented in �real header
ode�, they are
ompletely immune to the limitations of ma
ros,and simply mu
h easier to maintain.
• This approa
h does ALL ne
essary registration, in
luding
lassloader registration (
ould not be reliablydone via the ma
ro approa
h, due to ODR-violation possibilities).
• Superma
ros
an be arbitrarily large, wheres ma
ros get very tedious to edit on
e they are longer than afew lines.
• They are mu
h, mu
h easier to debug when something doesn't
ompile: unlike
onventional ma
ros, weeven get proper �le names and line numbers (yes!!!!).The adoption of the superma
ro me
hani
 into s11n 0.8 opened up a huge number of possibilities whi
h weresimply not pra
ti
al to do before, and impli
ations are still not fully appre
iated/understood.12.2 General: Interfa
e TypesAll of s11n's a
tivity is �keyed� to a type's Interfa
e Type. This is used for a number of internal me
hanisms,far too detailed to even properly summarize here. A Interfa
eType represents the base-most type whi
h a�registration tree� knows about. In
lient/API terms, this means that when using a heirar
hy of types, thebase-most Serializable type should be used for all templatized Interfa
eType/SerializableType parameters.(See, it's di�
ult to des
ribe!)In most usage using Interfa
eTypes as key is quite natural and normal, but one known
ase exists where they
an be easily
onfused:Assume we have this heira
hy: 53

AType <�[extended by℄ � BType <� CTypeIn terms of mat
hing Interfa
eType to subtypes, for most purposes, that looks like this:
• BType's Interfa
eType is AType
• CType's Interfa
eType is ATypeThere are valid
ases where registering both AType and BType as bases of CType are useful, but doing so inthe same
ompilation unit will fail with the default registration pro
ess, with ODR
ollisions. The need to dothis is rare (or non-existant, for most pra
ti
al purposes), in any
ase, and requires a good understanding ofhow the
lassloader works. Doing it is very straightforward, but requires a bit of
lient-side e�ort.12.3 Choosing
lass names when registerings11n does not
are what
lass names you use. We
ould
all, e.g. std::map<string,string> �fred� and theend e�e
t is the same. In fa
t, we
ould also
all the pair type
ontained in that map �fred� - without getting a
ollision - be
ause it uses a di�erent
lassloader than the map (be
ause they have di�erent Interfa
eTypes, asdes
ribed in se
tion 12.2).The important thing is that we are
onsistent with
lass names. On
e we
hange them, any older data will notbe loadable via the
lassloader unless we expli
itely alias the type names via the fa
tory's aliasing API (sees11n::
l::
lassloader_alias()).By
onvention, s11n uses a
lass' C++ name, stripped of spa
es and any
onst and pointer parts. The �noise�parts are, it turns out, irrelevant for purposes of
lassloading and
ause
ompletely unne
essary maintenan
ein other parts of the
ode (in
luding, potentially,
lient
ode). Thus, when s11n saves a (std::string) or a(std::string *) the type name s11n uses will be �std::string� (or even �string�) for both of them, and the
ontextof the de/serialization determines whether we need to dynami
ally allo
ate pointers or not. It is, of
ourse, upto
lient
ode to deallo
ate any pointers
reated this way. For example, when deserializing a list<string*>,the
lient must free the list entries. (Tip: see s11n::
leanup_serializable() for a simple, generi
 way toa

omplish this.)12.4 Registering Interfa
e Types supporting serialization operatorsAs of s11n 0.8, s11n �requires� so-
alled Default Serializables to be registered. In truth, they don't have to befor all
ases, but for widest
ompatibility and ease of use, it is highly re
ommended. It is pretty painless, andmust be done only one time per type:#define S11N_TYPE ASerType#define S11N_TYPE_NAME "ASerType"#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>The registration of a subtype of ASerType looks like:#define S11N_BASE_TYPE ASerType#define S11N_TYPE BSerType#define S11N_TYPE_NAME "BSerType"#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>The S11N_xxx ma
ros are #undef'ed by the registration
ode, so
lient
ode need not do so, and may registerseveral
lasses in t a row by by simple re-de�ning them before in
luding the superma
ro
ode.12.5 Registering types whi
h implement a
ustom Serializable interfa
eIf a
lass implements two serialization fun
tions, but does not use operator() overloads, the pro
ess is simplya minor extension of the default
ase des
ribed in the previous se
tion. We must do two things:First, de�ne a fun
tor whi
h, in its Serialization Operators, forwards the
all to MyType's serialization interfa
e.An example of su
h a fun
tor: 54

stru
t MyType_s11n {// note that the proxy
lass name is unimportant: Gary Boone
ame up with the XXX_s11n
onventioni adopted ittemplate <typename NodeType>bool operator()(NodeType & dest,
onst MyType & sr
)
onst {return sr
.lo
al_serialize_fun
tion(node);}template <typename NodeType>bool operator()(
onst NodeType & dest, MyType & sr
)
onst {return sr
.lo
al_deserialize_fun
tion(node);}};Se
ond, before in
luding the registration superma
ro as shown in the previous se
tion, simply add one or bothof these de�nes:#define S11N_SERIALIZE_FUNCTOR MyType_s11n#define S11N_DESERIALIZE_FUNCTOR MyType_s11n // OPTIONAL: defaults to S11N_SERIALIZE_FUNCTORThe se
ond fun
tor is only ne
essary if you de�ne separate fun
tor
lasses for de/serialization operations. Inthe vast majority of
asses one proxy handles both de/serialize operations, so the se
ond ma
ro need not be set.That's it - you're done telling s11n how to talk to your lo
al serialization API. Now
alls to s11n::de/serialize()will end up routing through the lo
al_de/serialize_fun
tion() API.12.6 Registering Serializable ProxiesIn fa
t, there is no one single way to do this, be
ause there are several pie
es to a registration:The important things are:
• Proxied (not proxy) type must be registered with appropriate
lassloader: monomorphs register with theirown, as to Interfa
e/Base-most Types, and sub
lasses register with their Interfa
e Type's
lassloader.
• s11n_traits<ProxiedType>::
lass_name() should return the
lass name whi
h s11n will use for thetype. For monomorphs the library
an �gure this out on its own, but needs help with polymorphi
 typenames.
• An s11n_traits<> spe
ialization installed (se
tion 6.2).After months of experimentation, s11n re�nes the pro
ess to simply
alling the following superma
ro:#define S11N_TYPE ASerType#define S11N_TYPE_NAME "ASerType"#define S11N_SERIALIZE_FUNCTOR ASerType_s11n// optional: #define S11N_DESERIALIZE_FUNCTOR ASertType_des11n// DESERIALIZE defaults to the SERIALIZE fun
tor, whi
h works fine for most
ases.#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>Note that the names of the de/serialize fun
tors shown here are arbitrary: you'll need to use the name(s) ofyour proxy type(s).This is repeated for ea
h proxy/type
ombination you wish to register. The ma
ros used by reg_s11n_traits.hppare temporary, and #undef'd when it is in
luded.There are other optional ma
ros to de�ne for that header: see reg_s11n_traits.hpp for full details.If we extend ASerType with BSerType, B's will look like this:#define S11N_BASE_TYPE ASerType#define S11N_TYPE BSerType#define S11N_TYPE_NAME "BSerType"#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>Without the need to spe
ify the fun
tor name - it is inherited from the type set in S11N_BASE_TYPE.55

12.7 Where to invoke registration (IMPORTANT)It is important to understand exa
tly where the Serializable registration ma
ros need to be, so that you
an pla
ethem in your
ode at a point where s11n
an �nd them when needed. In general this is very straightforward,but it is easy to miss it.At any point where a de/serialize operation is requested for type T via the s11n
ore framework (in
ludings11nlite), the following
onditions must be met:
• The Serializable registration implementation
ode for T must be available to s11n. In pra
ti
e, this meansthat the registration
ode must be available to the the
lient
ode requesting the operation at the time itis
ompiled.
• T must be a
omplete type, not, e.g. de�ned only via a forward de
laration. (T's implementation neednot be available, only it's interfa
e de
laration.)Be
ause of s11n's templated nature, these rules apply at
ompile time. This essentially means that the regis-tration should generally be done in one of the following pla
es:
• T's header �le. Most straightforward, but also the sloppiest, as is ties type T very
losely to libs11n. Thismay also in
rease
ompile times noti
ably.
• The implementation �le(s)
alling the serialization operation. (Be
areful to avoid undue dupli
ation ofma
ro
alls, for maintenan
e reasons and to avoid ODR violations.)
• When Serializables are
ompiled to a DLL, the
lass' sour
e �le is a good pla
e to put it, as it will onlybe
ompiled in that one pla
e.
• A separate header
reated ex
lusively for this purpose, whi
h is in
luded by any
ode whi
h initiatesde/serialize operations on T obje
ts. For example, we might have T.hpp and T_s11n.hpp, with the latterhandling s11n registration. This is probably the
leanest solution for non-trivial proje
ts, and is generallythe approa
h taken by s11n's author.
• In the simplest
lient-side
ase, a main.
pp with all implementation
ode in that �le, simply
all thema
ros right after ea
h
lass' de
laration. If you later refa
tor
lasses out of the main �le, move theirregistration
ode to their implementation �les.12.7.1 Hand-implementing the ma
ro
ode (IMPORTANT)The traditional (pre-0.8.x) registration ma
ros are
onvenien
es for handling
ommon
ases. They
annot handleall
ases, mainly be
ause C ma
ros are so limited. The newer superma
ro te
hnique is far superior, and highlypreferred.That said, whenever these do
s refer to
alling a
ertain ma
ro, what they really imply is: in
lude
ode whi
his fun
tionally similar to that generated by the published ma
ro. This
ode
an be hand-written (and may needto be for some unusual
ases), generated via a s
ript, or whatever. In any
ase, it must be available when s11nneeds it, as des
ribed above.13 Proxies, fun
tors and algorithmsTODO: REWRITE FOR 1.1"Politi
s is for the moment, an equasion is for eternity."Albert Einsteins11n's proxying feature is probably it's most powerful
apability. s11n's
ore uses it to proxy the
ore de/serialize
alls between, e.g. FooClass::save_state() and OtherClass::operator().Note that any non-serializable type whi
h s11n proxies is a
tually a Serializable for all purposes in s11n. Thus,when these do
s refer to a Serializable type, they also imply any proxied types. The proxies, on the other hand,are not te
hni
ally Serializables.How to register a type as a proxy is explained in se
tion 12.6.Most of the
lasses/fun
tions listed in the se
tions below live in one of the following header �les:56

<s11n.net/s11n/algo.hpp><s11n.net/s11n/proxy/listish.hpp><s11n.net/s11n/proxy/mapish.hpp>The whole library, with the unfortunate ex
eption of the Serializer lexers, is based upon the STL, so experien
edSTL
oders should have no trouble
oming up with their own utility fun
tors and algorithms for use with s11n.(Please submit them ba
k to this proje
t for in
lusion in the mainstream releases!)It must be stressed there is nothing at all spe
ial or �sa
red� about the algorithms and proxies supplied withthis library. That is,
lients are free to implement their own proxies and algorithms,
ompletely ignoring anyprovided by this library. If you want, for example, a parti
ular list<T> spe
ialization to have a spe
ial proxy,that
an be done.13.1 Commonly-used ProxiesThis se
tion brie�y lists some of the available proxies whi
h are often useful for
ommon tasks.To install any of these proxies for one your types, simply do this:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�#define S11N_SERIALIZE_FUNCTOR serialize_proxy// #define S11N_DESERIALIZE_FUNCTOR deserialize_proxy// ^^^^ not required unless noted by the proxy's do
s.#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>When writing proxies, remember that it is perfe
tly okay for proxies to hand work o� to ea
h other - theymay be
hained to use several �small� serializers to deal with more
omplex types. As an example, thepair_serializable_proxy
an be used to serialize ea
h element of any map. If you write any proxies oralgorithms whi
h are
ompatible with this framework, please submit them to us!13.1.1 I/OStreamable types: s11n::streamable_type_serialization_proxyThis proxy
an handle any Streamable type, treating it as a single Serializable obje
t. Thus an int or floatwill be stored in its own node. While this is de�nitely not spa
e-e�
ient for small types, it allows some very�exible algorithms to be written based o� of this fun
tor, be
ause PODs registered with this proxy
an betreated as full-�edged Serialiables.Proxies for the most
ommon PODs
ome with the library. To register su
h a proxy, simply do:#in
lude <s11n.net/s11n/proxy/pod/TYPENAME.hpp>If a POD type you are using does not have a proxy header, look at the existing proxies to see how to do this.13.1.2 Arbitrary list/ve
tor types: s11n::list::list_serializable_proxyThis �exible proxy
an handle any type of list/ve
tor
ontaining Serializables. It handles, e.g. list<int> andve
tor<string*>, or list<pair<string,double*>>, provided the internally-
ontained parts (like the pair) areSerializable. Remember, the basi
 PODs are inherently handled, so there is need to register the
ontained-in-listtype for those or std::string.Registration
ode for the standard list types
an be in
luded like so:#in
lude <s11n.net/s11n/proxy/std/list.hpp>#in
lude <s11n.net/s11n/proxy/std/ve
tor.hpp>#in
lude <s11n.net/s11n/proxy/std/set.hpp>#in
lude <s11n.net/s11n/proxy/std/multiset.hpp>#in
lude <s11n.net/s11n/proxy/std/deque.hpp>Trivia:The sour
e proxy algo this type shows an interesting example of how pointer and non-pointer types
an be treated identi
ally in template
ode, in
luding allo
ation and deallo
ation obje
ts in a waywhi
h is agnosti
 of this detail. This makes some formerly di�
ult
ases very staightforward toimplement in one fun
tion. 57

13.1.3 Streamable maps: s11n::map::streamable_map_serializable_proxyThis proxy
an serialize any std::map-
ompliant type whi
h
ontains Streamable types. This in
lude std::multimap.13.1.4 Arbitrary maps: s11n::map_serializable_proxyLike list_serializable_proxy, this type
an handle maps
ontaining any pointer or referen
e type whi
h isitself a Serializable.Registration
ode for the standard map types
an be in
luded like so:#in
lude <s11n.net/s11n/proxy/std/map.hpp>#in
lude <s11n.net/s11n/proxy/std/multimap.hpp>There is one minor
aveat to keep in mind regarding the map proxies: during
leanup after a failed deserialization(se
tion 6.2.1), the
leanup routines
annot expli
itely
lean up the keys of the maps be
ause they are
onst.In the vast majority of the
ases, this is no issue at all. It is only a problem when the keys are pointers. Inthis
ase, deserialization will
reate the obje
ts, but the failed-deser
leanup pro
ess
annot deallo
ate them.If you have maps
ontaining keys of a pointer type, you should be
ertain to
at
h any deserialization failuresinvolving the map and deallo
ate the pointers.13.1.5 Arbitrary pairs: s11n::map::pair_serializable_proxyLike list_serializable_proxy, this type
an handle pairs
ontaining any pointer or referen
e type whi
h isitself a Serializable.This proxy
an be installed for std::pair types with:#in
lude <s11n.net/s11n/proxy/std/pair.hpp>13.2 Commonly-used algorithms, fun
tors and helpersThe list below summarizes some algorithms whi
h often
ome in handy in
lient
ode or when developing s11nproxies and algorithms. Please see their API do
s for their full details. Please do not use one of these withoutunderstanding it's
onventions and restri
tions.More fun
tors and algos are being developed all the time, as-needed, so see the API do
s for new ones whi
hmight not be in this list.fun
tion() or fun
tor Short des
riptions11n::[list,map℄::free_[list,map℄_entries() Deallo
ates list/map entries. Not for nested
ontainers.s11n::
reate_
hild() Creates a named data node and inserts it into a given parent.s11n::find_
hild_by_name() Finds a sub-node of a node using it's name as a sear
h
riteria.s11n::obje
t_deleter Use with std::for_ea
h(), to generi
ally deallo
ate obje
ts.s11n::map::de/serialize_streamable_map() Do just that. Supports any map
ontaining only i/ostreamable types.s11n::map::de/serialize_[map/list/pair℄() De/serialize maps/pairs of Serializables.s11n::list::de/serialize_streamable_list() Ditto, for list/ve
tor types.s11n::obje
t_referen
e_wrapper Refer to an obje
t as if it is a referen
e, regardless of its pointerness.s11n::abstra
t_
reator Consolidates sta
k/heap allo
ation into one API.As of version 1.1.3, ea
h of the list/map/pair algorithms, plus many of the main algorithms, have an equivalentfun
tor with the same name, plus a su�x of _f (as in �fun
tor�). e.g., serialize_map()== serialize_map_f.13.3 When proxies aren't desiredOftentimes, installing a proxy for a type whi
h will be s11n'd at only one
ode-point is simply overkill. Thereare also
ases where proxies
annot be used for a given type T be
ause a di�erent proxy has already installedfor T: installing two proxies for one type results in an ODR violation.In many
ases we don't need to use proxies. When we, as the designers of serialization algorithms, know thatour data
an be handled without installing a proxy, we
an sometimes use available algorithms dire
tly:58

#in
lude <s11n.net/s11n/proxy/listish.hpp> // list-type algostypedef std::list<std::string> SList;...SList mylist;...s11n::list::serialize_streamable_list(destnode, mylist); // no proxy neededThat parti
ular algorithm only supports lists
ontaining i/ostreamable types, whi
h do not need a proxy. Onthe other hand, if we do the following, we would need a proxy for both our list and string types:#in
lude <s11n.net/s11n/proxy/std/list.hpp>#in
lude <s11n.net/s11n/proxy/pod/string.hpp>s11n::serialize(destnode, mylist); // list and string both need a proxy here!Many of the generi
 proxies provided with the library need to serialize
ontained members, e.g. all of the�non-streamable�
ontainer-related algos, and use s11n::[de℄serialize() to to do so. This means that they willindire
tly require some form of proxy to be installed for their
ontained types, or will require that the type tobe serialized be �dire
tly� serializable.13.4 Fun
tor tagsAs of version 1.1.3, the library de
lares a number of empty stru
ts as tags for proxies. This allows the following:
• Clearer understanding of the API, as we
an now physi
ally stamp all fun
tors with a
ategory label (orlabels). This is one approa
h to saying �fun
tor X models
on
ept Y,� and tagging allows us to turn a
on
ept into more than a note in the do
umentation.
• A ni
e side e�e
t of tagging is that when when generating API do
s/
lass hierar
hy views (e.g., withDoxygen), all tagged stru
ts get grouped by inheriten
e (tag type). This makes the library easier to geta mental grip on.
• May allow us to use operator and template overloading to assist in
omposition of fun
tors. e.g., we
an
ompose two nullary de/ser fun
tors into a single nullary fun
tor returning (f1 && f2). With operatoroverloads and template metaprograming, using the tag types to guide the way, we
ould potentially write(f0 = f1 && f2 && f3) to generate a fun
tor whi
h lazily
alls three de/ser operations, applying normallogi
al-and behaviour if either f1 or f2 fail. This will be easier to implement on
e the C++ TR1/std::tr1is out in the wild (it
ontains mu
h better general fun
tor support than the STL).See the �le tags.hpp for the full list of tags and the
onventions they imply.Be
ause the de/serialization API has a narrow set of
ore fun
tions, and a
onsistent API amongst them, it ishoped that we
an
reate some s11n-spe
i�

ompositions without having to in
lude a full-�edged
ompositionframework like one provided by Boost.14 Data Formats (Serializers)"...
ontrol is a degree of inhibition, and a system whi
h is perfe
tly inhibited is
ompletely frozen."Alan W. Watts, The BookThat quote might seem a bit out of pla
e, but it is justi�ed: the format of a data �le is one way of imposing
ontrol over the data. Indeed, all stored data is stored in some format or other. In proje
ts whi
h support asingle data format (or small number of them), it is not un
ommon for the format itself to be
ome a limiting fa
torin the proje
t's development at some point. That's just plain wrong vis-a-vis modern development te
hniques,and we will have none of it. One of s11n's goals is to free
lients from the restri
tion of a single format, or evena pair of formats, so that the sele
tion of a data format be
omes a ba
kground detail, as opposed to a majordesign de
ision. In addition to shipping with support for several data formats, users are free to add their ownformats on top of the
ore library. 59

Ignoran
e of data formats is all �ne and good, but having a serialization library whi
h doesn't ship withsupport for any formats at all is nearly useless. This se
tion
overs the s11n::io layer, whi
h is the �default�i/o implementation for the library.The s11n::io namespa
e provides an interfa
e, generi
ally known as the Serializer interfa
e, whi
h de�nes how
lient
ode initializes a load or save request but spe
i�es nothing about data formats. Indeed, the i/o layer ofs11n is implemented on top of the
ore serialization API, whi
h was written before the i/o layer was, and the
ore is 100% independent of the s11n::io layer.14.1 General
onventionsHowever data-format agnosti
 s11n may be, all supported data formats have a similar logi
al
onstru
tion. Thebasi

onventions for data formats
ompatible with the s11n model are:
• Ea
h data �le
ontains, at most, one root node, per long-standing DOM
onventions.
• Nodes may represent any Serializable type, with all that that implies, or �raw� data nodes (without typemeta-information).
• Nodes may
ontain an arbitrary number of
hild nodes.
• Nodes must have a name meeting the
riteria spe
i�ed in se
tion 5.3. The name need not be unique withinthat bran
h of the tree.
• Nodes must have an �implementation
lass name� set - the
lass name of the type for whi
h the node
ontains data, to be used by the
lassloader when deserializing the node. It is a

eptable to use �dummynames� here, provided someone knows how to handle the data without knowing its
lass name (e.g. thefun
tions des
ribed in in se
tion 10.4 work this way). In this library we use s11n::node_traits<NodeType>::
lass_name(node)to set the
lass name of a node.
• Nodes may
ontain an arbitrary number of key/value pairs,
alled properties:� Propery keys must be unique within any given node, and �should�
ontain only alpha-numeri

har-a
ters or unders
ores, for
ompatibility with the widest variety of i/o formats. See se
tion 5.3 for thegeneral guidelines.� Property values may be of any Streamable Type (not pointers) whi
h supports de/serialization viathe standard C++ istream>> and ostream<< operators.All that is basi
ally saying is, the framework expe
ts that data
an be stru
tured similarly to an XML DOM.Pra
ti
e implies that the vast majority of data
an be easily stru
tured this way, or
an at least be stru
tured ina way whi
h is
onvertable to a DOM. Whether it is an e�
ient model for a given data set is another questionentirely, of
ourse.14.1.1 File extensionsFile extensions are irrelevant for the library -
lient �les may be named however
lients wish. Clients are of
ourse free to implement their own extention-to-format or extension-to-
lass
onventions. (i tend to use the �leextension .s11n, be
ause that's really what the �les are holding - data for the s11n framework.)14.1.2 IndentationMost Serializers indent their output to make it more readable for humans. Where appropriate they use hardtabs instead of spa
es, to help redu
e �le sizes. There are plans for o�ering a toggle for indention, but whereexa
tly this toggle should live is still under
onsideration. On large data sets indentation
an make a signi�
antdi�eren
e in �le size - to the order of 10% of a �le's size for data sets
ontaining lots of small data (e.g. integers).14.1.3 Entity translationMany (most) i/o formats supported by s11n require some form of string translations in order to store data whi
hmight otherwise be
onfused as part of their grammars. These translations happen transparently to users, butit is useful to know about them be
ause: 60

• You may want to hand-edit your data, in whi
h
ase you need to ensure that you properly �es
ape�(translate) your data.
• You might want to save data whi
h has subtle in
ompatibilities with
ertain formats.The translations done by ea
h Serializer are de�ned in the API do
umentation for the Serializer
lass.As an example of the se
ond point, let's
onsider that we are saving the raw string �<<>>�. Most of youwill re
ognize those
hara
ters from XML, HTML, or the like. That string will almost
ertainly
ause problem inthe XML-related Serializers, not at serialization-time, but at deserializaiton-time. The reason is be
ause it maygo through the following transformations (depending on the
ontext and the parser, but this is a worst-
ase):Serialize == �<<>>�Deserialize == �< <> >�That deserialized result is
ertainly not what we saved!This parti
ular problem is only likely to arrise when storing text for use in higher-level parsers, e.g. HTML, andwill not happen when storing numbers, simple strings, and the like. The generi
 translation
ode has provento work rather well over the past 1.5+ years, but may get
onfused in some unusual
ases. If you �nd spe
i�
errors, please report them to us (and send us the data �le, if possible).So, though the library is format-agnosti
, its users probably should not be. Of the
urrent Serializers, only
ompa
t does no translations, whi
h makes it suitable for use as a data format in
ases where the user is
on
erned about any sort of translation-related mangling.14.1.4 Magi
 CookiesThis information is mainly of interest to parser writers and people who want to hand-edit serialized data orgenerate it from non-libs11n sour
es, like Perl s
ripts.Ea
h Serializer has an asso
iated "magi

ookie" string, represented as the �rst line of an s11n data �le. In theexamples shown in the following se
tions the magi

ookie is shown as the �rst line of the sample data. This stringshould be in the �rst line of a serialized �le so the data readers
an tell, without trying to parse the whole thing,whi
h parser is asso
iated with a �le. The input parsers themselves do not use the
ookie, but it is required by
ode whi
h maps
ookies to parsers. This is a
ru
ial detail for loading data without having to know the data for-mat in advan
e. (Tip: it uses s11n::
l::
lassload<SomeSerializerInterfa
eType>(first_line_of_input_stream)).Note that the i/o
lasses in
lude this
ookie in their output, so
lients need not normally even know the
ookieexists - they are mentioned here mainly for the bene�t of those writing parsers, so they know how the frameworkknows to sele
t their format's parser, or for those who wish to hand-edit s11n data �les.Be aware that s11n
onsumes the magi

ookie while analyzing an input stream, so the input parsers do not gettheir own
ookie. This has one minor down-side - the same Serializers
annot easily support multiple
ookies(e.g. di�erent versions). However, it makes the streaming simpler internally by avoiding the need to bu�er thewhole input stream before passing it on.See s11n/io/serializers.hpp for the API for adding new Serializers to the framework.Versions 0.9.7 and higher support a spe
ial
ookie whi
h
an be used to load arbitrary Serializers without havingto pre-register them. If the �rst line of a �le looks like this:#s11n::io::serializer ClassNamethen ClassName is
lassloaded as a Serializer (a subtype of s11n::io::data_node_serializer<>) and, ifsu

essful, that obje
t is used to parse the remainder of the stream. Versions 1.1.0+ supports an additionalform, fun
tionally identi
al to the above:#!/s11n/io/serializer ClassName14.2 Overview of available SerializersThis se
tion brie�y des
ribes the various data formats whi
h the in
luded Serializers support. The exa
t dataformat you use for a given proje
t will depend on many fa
tors. Clients are free to write their own i/o support,and need not depend on the interfa
es provided with s11n.61

Basi

ompatibility tests are run on the various de/serializers, and
urrently they all seem to be equally
ompat-ible for �normal� serialization needs (that is, the things i've used it for so far). Any known or potential problemswith spe
i�
 parsers are listed in their des
riptions. No signi�
ant
ross-format in
ompatibilities are knownto exist, with the ex
eption that the expat_serializer is XML-standards
ompliant, and is very unforgivingabout things like numeri
 node names.As of version 0.9.14, the available Serializers are shipped as DLLs, not linked in dire
tly with the library. s11nliteauto-loads the �known� Serializers (those shown below) at startup, but
lients will have to load their own DLLsif they provide any. See s11nlite.
pp:s11nlite_init() for a sample implementation whi
h loads a knownlist of DLLs.14.2.1
ompa
t (aka, 51191011)Serializer
lass: s11n::io::
ompa
t_serializerThis Serializer read and writes a
ompa
t, almost-binary grammar. Despite it's name (and the initial expe
ta-tions), it is not always the most
ompa
t of the formats. The internal �dumb numbers� nature of this Serializer,with very little
ontext-dependen
y to s
rew things up while parsing, should make it suitable for just about anydata.Known limitations:
• Hand-editing it is very di�
ult. The data's sizes are en
oded in the stream, pre
eeding the data, and any
hange in the data requires an update to the size - failing to do so e�e
tively
orrupts the data.
• Node/key/
lass names are limited to 255
hara
ters.
• Property data is �limited� to 4GB per property.Sample:5119101136f108somenode06NoClasse101a0003foo...14.2.2 expatxmlSerializer
lass: s11n::io::expat_serializerThis Serializer, added in version 0.9.2, uses libexpat37 and is only enabled if the build pro
ess �nds libexpaton your system. It is grammati
ally similar to funxml (se
tion 14.2.4), but �should� be more robust be
ause ituses a well-established XML parser. Additionally, it handles self-
losing nodes, something whi
h funxml doesnot do.Known limitations/
aveats:
• Does only very rudimentary
hara
ter translation for XML entities - just enough for the input parser toreliably handle it. This will be �xed when problemati
 data a
tually shows up in a use-
ase.
• Not thread-safe: it is not safe to read from more than one of these obje
ts at a time, e.g. in a
lient/serverenvironment.
• XML standards
ompliant, whi
h means it does not tolerate extensions supported by the other s11n XMLformats, like numeri
 node names.Sample:<!DOCTYPE s11n::io::expat_serializer><nodename
lass=�SomeClass�><property_name>property value</property_name><prop2>value</prop2><empty_property/><empty_
lass
lass=�Foo�/></nodename>36�5119� is as
lose to �s11n� as i
ould get with integers. �1011� represents the data format version (there was a prede
essor in0.6.x and earlier).37http://expat.sour
eforge.net 62

14.2.3 funtxt (aka, SerialTree 1)Serializer
lass: s11n::io::funtxt_serializerThis is a simple-grammared, text-based format whi
h looks similar to
onventional
on�g �les, but with someimportant di�eren
es to support deserialization of more
omplex data types.This format was adopted from libFunUtil, as it has been used in the QUB proje
t sin
e mid-2000, and shouldbe read-
ompatible with that proje
t's parser. It has a very long tra
k re
ord in the QUB proje
t and
anbe re
ommended for a wide variety of
ommon uses. It also has the bene�t of being one of the most human-readable/editable of the formats.Known
aveats/limitations:
• Known to have problems reading some unusual string
ontru
ts, su
h as properties whi
h start with aquote but do not end with one.Sample:#SerialTree 1nodename
lass=SomeClass {property_name property valueprop2 property values
an \span lines.#
omment line.
hild_node
lass=AnotherClass {... properties ...}}Unlike most of the parsers, this one is rather pi
ky about some of the
ontrol tokens38:
• Closing bra
es must be on a line by themselves.
• Ea
h property must be on it's own line, but may span lines if ea
h newline is ba
kslash-es
aped. Su
hnewlines are retained when the data is read in.This parser a

epts some
onstru
ts whi
h the original (libFunUtil) parser does not, su
h as C-style
ommentblo
ks, but those extensions are not do
umented be
ause i prefer to maintain data
ompatibility with libFunUtil,and they play no role in the automated usage of the parser (they are useful for people who hand-edit the �les,though).14.2.4 funxml (aka, SerialTree XML)Serializer
lass: s11n::io::funxml_serializerThe so-
alled funxml format is, like funtxt, adopted from libFunUtil and has a long tra
k-re
ord. This �leformat is highly re
ommended, primarily be
ause of it's long history in the QUB proje
t, and it easily handlesa wide variety of
omplex data.Known limitations/
aveats:
• Does only very rudimentary
hara
ter translation for XML entities - just enough for the input parser toreliably handle it. This will be �xed when problemati
 data a
tually shows up in a use-
ase.
• To help support the various
ontainer serialization fun
tions (se
tion 10.4), this parser a

epts node nameswhi
h are numeri
. That feature is not
ompatible with XML standards, and data �les whi
h use thisfeature may not be loadable by most XML tools without some �ltering.
• Does not parse self-
losing elements, e.g. <node ... />.Sample:<!DOCTYPE SerialTree><nodename
lass=�SomeClass�><property_name>property value</property_name><prop2>value</prop2><empty></empty></nodename>38Hey, it was my �rst lexer - gimme a break ;). Also, i wanted it to be
ompatible with libFunUtil's.63

14.2.5 parensSerializer
lass: s11n::io::parens_serializerThis serializer uses a
ompa
t lisp-like grammar whi
h produ
es smaller �les than the other Serializers in most
ontexts. It is arguably as easy to hand-edit as funtxt (se
tion 14.2.3) and has some extra features spe
i�
allyto help support hand-editing. It is arguably the best-suited of the available Serializers for simple data, likenumbers and simple strings, be
ause of it's grammati

ompa
tness and human-readability.Known limitations:
• Known to have problems with some unusual string
ontru
ts, su
h as properties whi
h start with a quotebut do not end with one.Sample:(s11n::parens)nodename=(ClassName(property_name value may be a \(�non-trivial�\) string.)(prop2 prop2)subnode=(SomeClass (some_property value))(* Comment blo
k.subnode=(NodeClass (prop value))Comment blo
ks
annot be used in property values,but may be used in
lass blo
ks (outside of a property)or in the global s
ope, outside the root node.*))This format generally does not
are about extraneous whitespa
es. The ex
eption is property values, whereleading whitespa
e is removed but internal and trailing whitespa
e are kept inta
t.When hand-editing, be sure that any
losing parenthesis [some people
all them bra
es℄ in propery values areba
kslash-es
aped:(prop_name
ontains a \) but that's okay as long as it's es
aped.)Opening parens may optionally be es
aped: this is to help out Ema
s, whi
h gets out-of-syn
 in terms ofindention and paren-mat
hing when only the
losing parens are es
aped. When saving data the Serializer willes
ape both opening and
losing parens.Histori
al spe
ulation: that might explain why, in STL do
umentation, they denote iterator be-gin/end ranges in the form [B,E), where �[� means in
lusive and �)� means ex
lusive. If thesymbols were de�ned the other way around, su
h that (B,E℄ had the same meaning as above,ema
s's paren-mat
hing and indention modes would get out of syn
, whi
h would most
ertainlyhave frustrated the designers of the STL. :) Even if that is not the
ase - whi
h it is probably isnot - the paren serializer does expli
itely have this es
aping behaviour to a

omodate ema
s. Yeah,i know that a real, die-hard, lisp-loving ema
s user [with way too mu
h extra energy℄ would havesimply implemented paren-serializer-mode... and probably would have implemented the C++-side serializer
lass on top of it. And it would work, too, be
ause ema
s is just
ool that way. But ihaven't got that mu
h energy, and thus the above-mentioned ba
kslash ha
k was introdu
ed.14.2.6 simplexmlSerializer
lass: s11n::io::simplexml_serializerThis simple XML diale
t is similar to funxml, but stores nodes' properties as XML attributes instead of aselements. This leads to mu
h smaller output but is not suitable for data whi
h are too
omplex to be used asXML attributes.This format handles XML CDATA as follows:
• Only CDATA wrapped in <![CDATA[a blo
k like this℄℄> are re
ognized.64

• At input-time all XML CDATA is stu�ed into the �CDATA� property of the node.
• At output-time any data in a node's CDATA property is not saved as an XML attribute named �CDATA�,but is instead stored as an XML CDATA blo
k.This is a non-standard extension to data node
onventions, so
lients whi
h rely on this feature will be dependenton this spe
i�
 Serializer. (Histori
al note: i wrote this Serializer in O
tober, 2003, and have never on
e usedthe CDATA feature outside of test
ases.)Known limitations:
• See the
aveats/limitations notes in se
tion 14.2.4. Most of those apply here.
• Not suitable for use with data whi
h
annot be safely stored as XML attributes. That is, it is �ne forstoring numbers and other simple types, but storing
omplex strings may result in Grief (in the form ofun-readable data).
• The XML attribute name �s11n_
lass� is reserved for use by the Serializer in storing ea
h node's impl_
lass().Sample:<!DOCTYPE s11n::simplexml><nodename s11n_
lass=�SomeClass�property_name=�property value�prop2=�"quotes" get translated�prop3=�value�><![CDATA[optional CDATA stuff ℄℄><subnode s11n_
lass=�Whatever� name=�sub1� /><subnode s11n_
lass=�Whatever� name=�sub2� /></nodename>14.2.7 wesnothSerializer
lass: s11n::io::wesnoth_serializer�wesnoth� is a simple text format based o� of the
ustom data format used in the game The Battle for Wesnoth(www.wesnoth.org).Known limitations:
• New (added in 0.9.14) and not well-tested.
• Does not yet properly support multi-line strings as property data. (At least, it's not tested.)Sample:#s11n::io::wesnoth_serializer[s11nlite_
onfig=s11n::data_node℄Generi
Workspa
e_size=1066x858s11nbrowser_size=914x560serializer_
lass=wesnoth[/s11nlite_
onfig℄14.3 Tri
ks14.3.1 Using a spe
i�
 SerializerEasy: simply pi
k the Serializer
lass you would like and use it's de/serialize() member fun
tions.Normally you must sele
t a
lass (i.e., �le format) when saving, but loading is done transparently of the format.65

14.3.2 Sele
ting a Serializer
lass in s11nliteSee
reate_serializer(string), whi
h takes a
lassname and
an load any registered sub
lass of s11nlite::serializer_base_type.Alternately, set the framework's default serializer type by
alling s11nlite::serializer_
lass(string). Asof 1.1, this setting is no longer automati
ally persistent a
ross all s11n
lients:
lient appli
ations must eitherset this at some point or rely on the
ompiled-in default (whi
h will be some built-in Serializer, but whi
h oneis not spe
i�ed by s11nlite's interfa
e).14.3.3 Multiplexing SerializersThis has never been done, but it seems reasonable:If you'd like to save to multiple output formats at on
e, or add debugging, a

ounting, or logging info to aSerializer, this is straightforward to do:
reate a Serializer. By sub
lassing an existing Serializer it is straight-forward to add your own
ode and pass the
all on. If you don't need s11n to see your Serializer, then don'twrite one, and simply provide a fun
tion whi
h does the same thing.Saving to multiple formats is only straightforward when the serializer is passed a �lename (as opposed to astream). In this
ase it
an simply invoke the Serializers it wishes, in order, sending the output to a di�erent�le. Pa
kaging the output in the same output stream is only useful if this theoreti
al Serializer
an also separatethem later. i
an personally see little bene�t in doing so, however (maybe a more
reative soul
an �nd a
leveruse for it, though... e.g. proto
ol-within-proto
ol wrapping for an RPC
hannel).14.4 Internals: �ex's role in s11nThis se
tion is intended only for those interested in the implementations of most of the
urrent Serializers. Itwill be of no interest to anyone else.The following Serializers have input parsers written using the ubiquitous GNU Flex tool. While it is a powerfultool, it's use in modern C++ proje
ts introdu
es a
ouple
hallenges:
• It generates C
ode. It
an be told to output C++
ode, but this has problems of its own, not the leastof whi
h is the shortage of do
umentation and it's �experimental� status sin
e the late 90's.
• Flex-generated C++
ode will not
ompile as-is under modern
ompilers be
ause of stri
ter standardssupport in today's tools. More re
ent versions of �ex, posted on Sour
eForge, generate un
ompilable
odeas well, but in other ways. (There's a good reason most Linux distros are still shipping 2.5.4.)
• It is di�
ult to introdu
e more than one �ex-based parser into a proje
t. The lexer sub
lassing te
hniqueis ma
ro-based, and this ends up
ausing no end of grief when mixing parsers in a proje
ts. This isparti
ularly troublesome in
ombination with templates (whi
h are normally inlined in headers).
• The lexer
ode has to be generated on a system with �ex. This rules out most Win32 systems immediately.Even on Unix systems, the generated
ode won't
ompile as-is on newer
ompilers and has to be pat
hedup with perl or sed before
ompiling it. While this type of manipulation is easy enough to integrate intoUnix-based Make�les, it is not at all trivial for most Win32 environments.i am not proud of the fa
t that the parsers are built on top of �ex. When starting out writing parsers, it wasthe only tool i knew about, so i used it. And �ex is still, after all these years, the only tool of it's kind whi
h iswell-distributed amongst Unix systems.The main reasons that most of the Serializers are still implemented in �ex, as opposed to re-implementing themin something more modern, are, in order of priority:1. i am so damned si
k of writing parsers. i
an't look at another one for a while. If you want to do it, iwould be grateful.2. There is no other �universally available� parsing kit for C++ out there. There are lots of proje
ts whoaspire to do this, but many are
ommer
ial, and various ambitious Open Sour
e proje
ts of this type havepetered out without produ
ing a usable produ
t.3. The s11n sour
e tree has a good deal of underlying support
ode (both C++ and Make�le rules) tointegrate �ex-based parsers into the library, su
h that they
an be build as �built-ins� or dynami
allyloaded without the library
aring whi
h it is. That
ode's been around a long time and works quite well,so i'm in no hurry to repla
e it. Using it, writing a new �ex-based Serializer is normally only a few hoursof work. 66

Long-term, i would eventually like to reimplement the parsers in, e.g., Spirit (http://spirit.sour
eforge.net),but see point #1 in the above list. Initial experimentation with Spirit suggests that it requires that bu�er allinput before tokenization starts. Experien
e has shown that this is not an a

eptable option for this library, asit
an drasti
ally a�e
t runtime speed of large data sets, and inherently in
reases our memory requirements byroughly a fa
tor of one. See se
tion 25.4 for more information on the impli
ations of su
h a
opy.15
lass_name() and friends�A rose by any other name would smell as sweet.�Shakespear�But a
lass not derived from T is-not-a T.�Anonymous Software DeveloperOn
e upon a time - the �rst few months of s11n's development - s11n developed a rather interesting tri
k forreliably getting a type's name at runtime. Despite how straightforward this must sound, i promise: it is not .C++ o�ers no 100% reliable, in-language, well-understood way of getting something as seemingly trivial as atype's frigging name. While s11n's tri
k (shown soon) works, it has some limitations in terms of
ases whi
hit simply
annot
at
h - the end e�e
t of whi
h being that obje
ts of BType end up getting the
lass name oftheir base-most type (e.g. �AType�). Let's not even think about using typeid for
lass names: typeid::name()o�
ially provides unde�ned behaviour, whi
h means we won't even
onsider it.Histori
al note:Very early versions of s11n used a typeid-to-typename mapping, whi
h worked quite well (and didnot require
onsistent typeids a
ross app sessions), but it turns out that typeid(T).name()
anreturn di�erent values for T when T is used di�erent
ode
ontexts, e.g. in a DLL vs linked in tothe main app. Thus that approa
h was, sadly, abandoned.To be honest, the details of
lass names vis-a-vis s11n, in parti
ular vis-a-vis
lient-side
ode, are an amazinglylong story. We're going to skip over signi�
ant amounts of ba
kground detail, theory, design philosophy, et
.,and
ut to the �hows� and the more signi�
ant �whys�.15.1 node_traits<T>::
lass_name()Note: in older s11n
ode we had an impl_
lass() fun
tion. That was identi
al to
lass_name(),but is long-sin
e depre
ated. The do
umentation may still refer to impl_
lass() in some
ases, butthese
an be safely understood to mean
lass_name().For s11n, a node's metatype
lass name is signi�
ant at the following points:1. When serializing an obje
t, the node it is stored in should have it's
lass_name() set to the obje
t's
lassname. This is trivial to a
hieve at the framework level for the majority of (all?) monomorphi
 types,but impossible to a
hieve polymorphi
ally without some small amount of
lient-side work. In s11n this�small amount� of work
omes in the form of setting a node's
lass_name() to the string form of theSerializable's
lass' name. This is done in an obje
t's serialize operator (not deserialize). If a type inheritsSerializable behaviours it must set the
lass_name() after
alling the inherited behaviour, to avoid thatthe parent type overwrite the
lass_name() of the subtype.Note that Serializable Proxies need to set the name of the Serializable type, not to the name of the proxytype. Why? Read the next se
tion and then it should be
lear.2. When deserializing a node to a given Interfa
eType, as in this
ode:Interfa
eType * b = s11nlite::deserialize<Interfa
eType>(somenode);s11n asks the Interfa
eType's
lassloader for an obje
t of the type mapped to the name stored innode_traits<NodeType>::
lass_name(somenode). The
lassloader, ideally, has a subtype of Interfa
e-Type registered with that name (or it is Interfa
eType's name, or maybe it
an �nd the type via a DLLlookup). If so, the
lassloader will return a new instan
e of that type and s11n will hand o� the data67

node to it using the internal API marshaling interfa
es. If no
lass of the given name
an be found byInterfa
eType's
lassloader (other
lassloaders are not
onsidered), deserialialization ne
essarily fails, asthere is no obje
t to deserialize the data into.When a data node is �dire
tly� handed to a Serializable (e.g. s11nlite::deserialize(sr
node,targetserializable)) then the
lass name is irrelevant, as s11n must assume that the given nodeand Serializable �belong together�, semanti
ally speaking. This property
an be used to store arbitrarydata in nodes and have a
omplementary deserialize algorithm or fun
tor whi
h understand the �datalayout� within the node. e.g. the various serialize_streamable_xxx() variants use this: ea
h pair ofde/serialize fun
tors supports one end of the data's �diale
t�, would be one way to put it. This
an beused to de/serialize some obje
ts whi
h are themselves not registered as Serializables, by simply �walking�them in our algorithm. In fa
t, in this
ase the only reason su
h types
annot be
alled true Serializablesis be
ause s11n's API does not have (is not given) a registered proxy through whi
h to redire
t them.In theory these points are all pretty straightforward, and all should make pretty
lear sense. After all, to loada spe
i�
 type it must have a lookup key of some type, and a
lassname makes a pretty darned
onvenient keytype for a
lassloader. The
lassloader's
ore a
tually supports any key type, but s11n is restri
ted to strings,mainly for the point just mentioned, but also be
ause non-strings aren't meaningful in the
ontext of doingDLL sear
hes for new Serializable types. Consider: what should an int key type be useful for in that
ontext -interpretting it as an inode number? Thus, s11n internally uses only string-keyed
lassloaders. This is not tosay that the string must be the same as a
lass' name: you may of
ourse use numeri
 strings.Hopefully the signi�
an
e of a node's
lass name is now fully understood. If not, please suggest how we
animprove the above text to make it as straightforward as possible to understand!Side-notes:
• i do honestly believe it to be impossible in C++, using only in-language te
hniques, to 100% reliably getthe
lass name for polymorphi
 types, not
onsidering options like external (�le-based) lookup tables. iwould be extremely happy to be proven wrong! Please
onta
t the development mailing list if youknow a magi
 tri
k for this!
• s11n a
tually did use external lookup tables for
lass names on
e,
reated by using the nm tool to extra
tall type names from an appli
ation/DLL after linking it. The immediate advantage is that it works fairlywell, as it has a

ess to all
lass names used in the binary (app/DLL), but it's
umbersome, build-wise,and very memory-hungry, as a huge number of the types in any binary are not at all relevant to the
lientfor purposes of s11n (e.g. std::__g

_blahblah_internal<Foo *,std::alo
ator<Foo>>, andwe
an't automati
ally know what most of those are).15.2 s11n_traits<T>::
lass_name(
onst T *)In s11n 1.1.0, s11n_traitswas expanded to repla
e the former
lass_name<> type (and the number of kludgeswhi
h
ropped up around it).Many of the shipped algorithms use this API to get node's
lass name, as des
ribed in the previous se
tion.Clients who have types whi
h have a fun
tion allowing them to return their real
lass name
an spe
ializes11n_traits for their type to allow s11n to internally get a

ess to the proper
lass names. An examplespe
ialization of this fun
tion might look like:std::string
lass_name(
onst T * hint) {if(! hint) return �T�;return hint->
lassName(); // assuming T's API has su
h a feature}15.3 Class name of �unknown�Sometimes you may see a
lass name of �unknown� in your data. This is not ne
essarily a problem, and
an be
aused by the following:typedef std::list<std::string> SL;SL li;... populate li ...s11n::list::serialize_streamable_list(destnode, li);68

Algorithms get their type's name by using s11n_traits<T>, and in the above
ase there isn't ne
essarily ans11n_traits<SL> installed be
ause the list type was never expli
itely registered as a Serializable (it doesn'tneed be to for this
ase).This is a
tually all �ne and good, and will not
ause any problems in a
ase like the one above. If you desperatelywant to set a
lass name, it is okay to do so in a
ase like this (but not as a general rule: see se
tion 23.5.1).In fa
t, for all deserialization whi
h does not involve pointers, the logi
al
lassname of a node is ignored., as thes11n'd data is fed to pre-existing obje
ts. In the
ase of pointers, we use the
lassname to load the obje
t, andthen pass that obje
t through the deserialization pro
ess just as we do any non-dynami
ally-allo
ated obje
t.16 Ex
eptions
onventions"I need a woman who
an say, 'honey,
an you please take a look at this sta
k tra
e while I orderthe pizza?' and really mean it."Anonymous Software DeveloperPlease also see the se
tion 19, whi
h is
losely related to this material.As of version 1.1, s11n attempts to de�ne a set of ex
eption-related guarantees, su
h that we
an de�ne thestate of, e.g. a
ontainer, when the de/serialization of a
hild node fails.It is important to always remember that, like most other software, s11n requires that destru
tors never throw. Ifa dtor throws then all ex
eption guarantees go out the window. Likewise, if a default
tor or a
opy/assignment
tor throws, guarantees may go bye-bye.The base-most ex
eption type for the framework is, naturally enough, s11n::s11n_ex
eption, whi
h derivesfrom std::ex
eption and follows the same interfa
e. The API does not have any throw(xxx) spe
i�ers onmost fun
tions. This is to allow the library to propagate user-thrown ex
eptions without running the riskof unexpe
ted() being
alled (that's C++'s way of
rapping out if a fun
tion throws an ex
eption whi
hdoes not mat
h its throw(xxx) spe
i�
ation). All fun
tions in the API should a

ommodate the propagationof ex
eptions, preferably with well-de�ned results. The exa
t guarantees regarding any throw behaviour arene
essarily do
umented on a per-algorithm basis, so see the appropriate API do
s. Almost all re
ursive routinesgo through the
ore de/serialize and may throw, but the exa
t de�nition of what happens in the fa
e of ex
eptionsmust be de�ned by ea
h algorithm.Note that no amount of
onventions will 100% transparently prote
t
lients from problems su
h as memoryleaks. As of version 1.1.3, the library is believed to be able to prote
t from all leaks it possibly
an. It has noknown leaks in valid use
ases, and allows
lients to extend the
leanup support su
h that their types
an beguaranteed not to leak if a deserialization fails, whether it fails due to an ex
eption or not.16.1 The library throws when...The
ore library itself never throws. It will pass on ex
eptions, but it does not throw any simply be
ause allthe real work is delegated.The various layers built around the
ore may or may not throw. The guidelines are:
• The support algorithms, like the
ontainers proxies, may throw whenever they like. Pre
ondition violationsare prime
andidates for throwing.
• The plugins layer does not throw, but
urrently only due to dependen
ies reasons, and this may
hangeat some point.
• The i/o layer may throw ex
eptions whenever it likes.
• s11nlite is purely a wrapper, and may propagate ex
eptions passed on through the
ore, plugins, i/o, or
lient_api<> layer.
• The post-failure
leanup support expli
itely
at
hes and dis
ards all ex
eptions, to ensure no-throw-on-destru
tion semanti
s.Plugin operations are
alled during the deserialization pro
ess to �nd unknown types. In theory they maythrow, but they
urrently do not. This no-throw poli
y is under
onsideration, and likely to
hange on
e thes11n_traits::
leanup_fun
tor (se
tion 6.2.1) has proven its worth.69

16.2 Throwing from
lient-side de/ser operationsLet's
onsider the following deserialization operator for
lass ST:bool operator()(
onst s11nlite::node_type & sr
) {typedef s11nlite::node_traits TR;if(! TR::is_set(sr
, �some_key�)) {// this is an error}...}The
lient has at least three options for how to handle the error:1. Re
over from the error, if possible/desirable. For example, use a default value for the missing data.2. Return false.3. Throw an ex
eption.Options 1 and 2 have been around sin
e the beginning of libs11n, but option 3 was introdu
ed in 1.1.0. When a
lient-side de/serialization algorithm throws, how the internals of the library rea
t to it depends on a number offa
tors. As of 1.1.3, the major algorithms were reimplemented to deallo
ate resour
es properly on ex
eptions,using s11n_traits::
leanup_fun
tor (se
tion 6.2.1). Ea
h algorithm do
uments its exa
t behaviour, but thegeneral overall guaranty is that no memory will go leaked if a deserialization fails. In older library versions, thiswas only true as long as the types whi
h failed to deserialize managed their own memory (i.e., not standard
ontainers of pointers, though these are now be safely handled).As a rule, if deserialization of an obje
t fails (returns false or throws), the obje
t is either unmodi�ed (onlypossible in a few
ases) or in an unde�ned state (the majority of
ases). A general prerequisites for when we
an apply the non-modi�ed guaranty to a Serializable type are:
• A
ustom algo must be used for the type, or an existing algo with this guaranty must be used. e.g., thedefault proxies for std::set and std::list use the same deserialization algo, whi
h happens to provide thisguaranty, thus both of those
ontainers provide it when the default algos/proxies are used.
• The type must support an e�
ient swap() feature, or something semanti
ally similar. This is be
auseone of the simplest, most e�e
tive, and most e�
ient ways to implement this guaranty is by using swap()after deserialization into an intermediary obje
t su

eeds.In fa
t, this library
ould theoreti
ally o�er the unmodi�ed guaranty in even the default-most algorithms, forall types, but this would require that all supported types be
opyable, whi
h might not be realisti
. It alsowould not be as inherently e�
ient as swap(). i have reservations against relying on std::swap() as the defaultbehaviour be
ause it does not guaranty an e�
ient swap, it only provides a standardized interfa
e for the swapfeature. Falling ba
k to std::swap() by default would be misleading at best, and may result in una

eptablebehaviours in some
ases unless swap() is reimplemented/overloaded.16.3 Errors and SerT * deserialize<NodeT,SerT>(
onst NodeT &)Consider this perfe
tly inno
ent-looking
all:T * t = s11nlite::deserialize<T>(mynode);What that does is essentially this:1. Try to instantiate on obje
t of type node_traits<>::
lass_name(mynode). If it fails, we
an safely signalan error at that point.2. Calls deserialize(mynode,*theNewObje
t). If it su

eeds, return theNewObje
t. If it fails...70

Now the
orre
tness of its behaviour is T-dependent. It was not until going over the ex
eptions support thatthe inherent danger of deleting the failed obje
t be
ame apparent. Client-written
lasses normally manage their
ontained obje
ts' memory, so these are not a problem, but any standard
ontainer
ontaining pointers is aproblem. If we delete a
ontainer obje
t whi
h itself
ontains pointers or
ontains, somewhere nested in itssub
omponents, any unmanaged pointers (not owned by their
ontaining obje
t) a deletion of theNewObje
twill
ause a memory leak.The s11n_traits::
leanup_fun
tor
onvention was developed to
reate a safe way for this fun
tion to handlesu
h an error
ase. If an ex
eption is thrown from this fun
tion, or deserialization otherwise fails, the internally-allo
ated obje
t
an be safely
leaned up via the
leanup fun
tor. For example, all of the following types willbe
lean up properly in the fa
e of errors, assuming that an appropriate
leanup fun
tor has been de�ned forea
h: list<T>list<int>map<int,list<multimap<double,T *> > >See se
tion 6.2.1 for how this works.16.4 Ex
eptions and �external modules�i re
ently (July 2005) bought the book C++ Coding Standards, by Herb Sutter and Andrei Alexandres
u. Item62 in the book is entitled �Don't allow ex
eptions to propagate a
ross module boundaries,� and explains that,for example, throwing an ex
eption from a de/serialization algorithm is not a
tually guaranteed to be safe ifthe ex
eption �
rosses module boundaries.� That is basi
ally to say, thrown from di�erent libraries linked inthe same appli
ation. Sin
e s11n is implemented largely in header �les, those parts whi
h would throw woulda
tually throw from your module, be
ause they are
ompiled as part of your
ode. There are a few non-templatepla
es whi
h
an throw as well. Going the other dire
tion: if your
lass' de/serialization operator throws, thatex
eption must go ba
k through the s11n
ore before being passed ba
k to the
aller. That would normally be�ne, but if the
lass whi
h threw the ex
eption is from another module, it might not be possible for your C++runtime environment to pass the ex
eption from the algo to s11n's
ore. These types of problems are related tomu
h lower-level operating system and hardware details than the C++ standard
an a

ommodate, and thusthe implementation depends 100% on your
ompiler, linker, and the benevolen
e of your
hosen god(s).That said...In pra
ti
e, it is possible to throw a
ross module boundaries when the throwing module and the modules theerror passes through are
ompiled �using the same options�, though what that really means in rather blurry. If,however, you
ompile library A on
ompiler version 1.0 and then another module under
ompiler version 1.2, theresults might not be binary-
ompatible enough to pass ex
eptions between the two. Again, vendor-dependent.Considering that i've been using s11n for almost two years now without an ex
eption
ausing this level of
rash,i personally
onsider this problem to of little
on
ern. Then again, during most of that time, ex
eptions wereexpli
itely not handled by the library (well, at least not properly), so they were never intentionally thrownduring de/serialization. Sin
e 1.1.x it is legal to throw, so... pay heed to the above advi
e.16.5 Spe
i�
 guaranteesThe
ore algorithms
annot provide a spe
i�
 guaranty on the state of an obje
t on whi
h deserialization fails,but as of 1.1.3 many of the major support algorithms
an. By extension, this means that using a Serializabletype whi
h is handled by these algorithms impli
itely gives these guarantees to the
ore algorithms.Below is a list of algorithms whi
h provide the following guarantees on a deserialization failure (in
ludingex
eptions) into a Serializable obje
t we will
all Target:1. Target is not modi�ed.2. Dynami
ally-allo
ated resour
es
ontained in Target are deallo
ated via the s11n::
leanup_serializable()me
hanism. (Se
tion 6.2.1.)3. All ex
eptions are propagated ba
k to the
aller.71

e.g., when
alling serialize(sr
node,mylist), the Target for the deserialization is mylist.Without a doubt, the se
ond guaranty is the most signi�
ant. The �rst guaranty has been waived sin
e s11n'searliest days, but re
ent
ode reviews and refa
torings provided satisfa
tory solutions to the
leanup problem,whi
h inherently makes the �rst guaranty easier to implement, in parti
ular for types whi
h support an e�
ientswap operation.The algorithms whi
h expli
itely support this are:
• s11n::list::deserialize_list(...)
• s11n::map::deserialize_pair(...)
• s11n::map::deserialize_map(...)
• TargetT * s11n[lite℄::deserialize(
onst NodeType & sr
)(In this
ase, the T obje
t might be modi�ed, but the
lient will never get the obje
t if deserializationfails, so the e�e
t is the same.)Other algorithms might support these guarantees as well - see the API do
s for the algorithms used by yourde/serialization proxies/implementations.16.6 Making your Serializables ex
eption-safeAs of 1.1.3, the s11n::
leanup_serializable() me
hanism (se
tion 6.2.1) is de�ned to �
lean up� obje
tswhi
h fail to deserialize. Originally
on
eived to
lean up standard
ontainers of unmanaged pointers, a smallAPI has grown up around that type whi
h simpli�es leak-prote
tion in many deserialization
ases. Let's
onsiderthe following
ode, assuming that it is some
lient-side
ode other than a de/serialize operator:s11nlite::mi
ro<MyType> mi
ro;MyType * myObj = mi
ro.load(�myfile.s11n�);if(! myObj) { ... loading failed! ... }...That's all �ne and good, but let's assume that either an ex
eption is thrown somewhere immediately afterwards,or that you are in fa
t utterly lazy and do not want to have to manually delete myObj. Both
ases have thesame solution, whi
h is to:1. Make sure we have a valid
leanup fun
tor installed. For types whi
h manage/own their own internalpointers, the default fun
tor will do the job - we only need to spe
i�
ally de�ne one for �
ontainer-like�types whi
h hold unmanaged pointers.2. Use s11n::
leanup_ptr<MyType> in a manner similar to how we would use std::auto_ptr<MyType>.Now we simply add modify the above
ode to look like this:s11n::
leanup_ptr<MyType> myObj(mi
ro.load(�myfile.s11n�));if(! myObj.get()) { ... loading failed! ... }Now, when myObj goes out of s
ope, s11n::
leanup_serializable<MyType>() will be
alled to take
are ofthe
leanup pro
ess. In fa
t, for types whi
h manage their own pointers, an auto_ptr<> will have the exa
tsame e�e
t for most type, but we show the
leanup_ptr<> approa
h for demonstration purposes. For example,the following
ase would not behave as desired with an auto_ptr<>:typedef std::list<MyType *> MyList;s11nlite::mi
ro_api<MyList> mi
ro;MyList * mylist = mi
ro.load(�myfile.s11n�);... 72

If we simply delete mylist, or use an auto_ptr<> to delete it, the pointers in mylist will leak! Depending onthe size of the list and the items it
ontains, the leak might be small or huge. In any
ase, no leak is a

eptablebehaviour.We
an
lean up any Serializable obje
t, regardless of pointerness, nestedness, et
. with:s11n::
leanup_serializable(foo);We don't
are if foo is a pointer or referen
e here, and we don't
are what type it is.When using pointers to Serializables, it is often more
onvenient to use
leanup_ptr<>, as demonstrated here:
leanup_ptr<MyList> mylist(mi
ro.load(�myfile.s11n�));When mylist goes out of s
ope, or when mylist.
lean() is
alled, or mylist is otherwise reassigned, the list iswalked and s11n::
leanup_serializable<MyType>() is
alled on ea
h entry in the list. The e�e
t is that thelist entries will get destroyed. Afterwards, the MyList pointer itself (if it is a pointer) is destroyed. If MyList
ontains another
ontainer, e.g., std::ve
tor<MyType*>, then that
ontainer will be walked re
ursively - theend e�e
t is the same, regardless of the nesting level. The only requirement is that the
ontained type have as11n_traits<>::
leanup_fun
tor whi
h is designed to work with that type (again, most obje
ts
an use thedefault or one of the already-supplied implementations).Keep in mind that
leanup_ptr<> is only for use with
leaning up registered Serializables, and is not ageneral utility
lass! If used on non-Serializables, it will use the default
leanup fun
tor, whi
h might ormight not have the desired results for any given type. The proxies for the standard
ontainers install a
leanup handler for their
ontainer type, so when proxying standard
ontainers, the hard part will be donefor you. In some
ases it is essential to write a
ustom
leanup fun
tor, however. See the example insr
/proxy/reg_list_spe
ializations.hpp for how this is done.17 SAM: Serialization API Marshaling layer�Play it again, Sam!�Common proverbA
htung: SAM is not Beginner's Stu�. This is, as Harald S
hmidt puts it so well in a German
o�eeadvertisement, Chefsa
he - intended for use by the �higher ups.� This is not meant to dis
ourage youfrom reading it, only to warn you that in s11nlite, and probably even when using the
ore dire
tly,you will normally never need to know about SAM. There may be some unusual
ases where writinga SAM spe
ialization is just what is needed, however.A
htung #2: There is a �ne line, and indeed some overlap, between
ertain responsibilities ofSAM and those of s11n_traits<>... but the line isn't well-de�ned and the small overlap is a
tuallya �exibility bene�t (e.g. where is a node's
lass_name() set?). In e�e
t, s11n_traits<> providesthe publi
 interfa
e for API marshaling and SAM provides the s11n-internal interfa
e. Traits andSAM also ea
h have some very distin
t responsibilities, and
onsolidating them into one type is notplanned.It's time to
onfess to having told a little white lie. Repeatedly, even willfully, many times over in this span ofthis do
ument.The Truth is:s11n's
ore doesn't a
tually implement it's own �Default Serializable Interfa
e�!WTF? If s11n doesn't do it, who does?Following
omputer s
ien
e's oft-quoted �another layer of indire
tion� law, s11n puts several layers of indire
tionbetween the de/serialization API and... itself. To this end, s11n de�nes a minimal interfa
e whi
h des
ribesonly what the s11n
ore needs in order to e�e
tively do it's work - no more, no less. s11n sends all de/serializerequests through this interfa
e, whi
h is generi
ally known as:SAM: Serialization API Marshaling39 layer39Note that both �marshaling� and �marshalling� are
orre
t spellings of this word. s11n uses the single-l variant be
ause ispelltold me that was
orre
t ;). 73

i admit it: i have, so far, willfully glossed right over SAM. However, i did so purely in the interest of keepingeveryone's brains from immediately going all wahoonie-shaped when they �rst open up the s11n manual. Asyou've made this far in the manual, we
an only assume that wahoonie-shaped brains suit you just �ne. If thatis indeed the
ase, keep reading to learn the Truth about SAM...17.1 The SAM layer & interfa
ei've been telling you this whole time that types whi
h support s11n's Default Serializable Interfa
e are... well,�by default, they're already Serializables.� In a sense, that's
orre
t, but only in the sense that i've been�abstra
ting away� the very subtle, yet very powerful, features implied by the existan
e of SAM. Bear with methrough these details, and then you'll surely understand why SAM is buried so far down in the manual.At the heart of s11n, the
ore knows only about these small details:
• SAM's two API fun
tions and their
onventions (whi
h are identi
al to those of s11n's
ore de/serializefun
tions).
• node_traits (se
tion 6.1), and only a small portion is used internally.
• s11n_traits (se
tion 6.2).s11n's
ore doesn't know anything about anyone's de/serialize interfa
e ex
ept for that of SAM's. The
ore,to be honest, is essentially quite dumb - implemented in a relative handful of lines of
ode - looking over the
ode now i'd guess that, if we don't
ount the [de℄serialize_subnode()
onvenien
e funtions, it's less than30 a
tual
ode lines(!!!).SAM de�nes the interfa
e between s11n's
ore and the world of
lient-side
ode. The following
ode reveals theentire
lient-to-
ore
ommuni
ation interfa
e:template <typename NodeType,SerializableT>stru
t s11n_api_marshaler {typedef SerializableT serializable_type;typedef NodeType node_type;stati
 bool serialize(node_type &dest,
onst serializable_type & sr
);stati
 bool deserialize(
onst node_type & sr
, serializable_type & dest);};(Prior to 1.1.3, the NodeType parameter was a template parameter for the fun
tions, but not the
lass. This
hapter normally refers to the older signature, but this di�eren
e is insigni�
ant for most purposes.)By now that interfa
e should look eerily familar. Note that stati
 fun
tions were
hosen, instead of fun
tor-styleoperator()s, based on the idea that these operations are a
tivated very often, and i felt that avoiding the
ostof su
h a frivilous fun
tor was worth it. Additionally, this interfa
e de�nes something �solid� for
lients, asopposed to s11n's normal
onvention of using two overloads of operator(). There's another, somewhat lamer,reason the operator()- style interfa
e
an sometimes
ause ambiguity errors, so it needs to be avoided here.SAM spe
ializations may de�ne additional typedefs and su
h, but the interfa
e shown above represents the
oreinterfa
e: extensions are
ompletely optional, but redu
tion in the interfa
e is not allowed.It is important to understand how s11n �sele
ts� a SAM spe
ialization: by the type argument passed as aSerializableType template parameter. Thus, s11n uses a SAM<myobje
t's type> spe
ialization. We've jumpedahead just a tad, and it's now time to ba
k up a step and, with the above in mind, get a better understandingof SAM's pla
e in the s11n model...17.2 SAM's pla
e in the API
alling
hain (and other important notes)After
lient
ode initiates a de/serialization operation, the pro
ess goes something like this:1. s11n passes o� the
all to to s11n_api_marshaler<T>::[de℄serialize(node,obj).2. SAM is now in
ontrol of the request. The default SAM implementation simply sets the node's
lass name,using s11n_traits<T>::
lass_name(), and delegates the request to s11n_traits<T>::[de℄serialize_fun
tor,as appropriate. 74

3. SAM eventualy returns to the
ore, whi
h then passes the results dire
tly ba
k to the user.In API terms, SAM is the internal pla
e to manipulate the marshaling pro
ess, e.g. to implement
ustom APItranslation. The publi
 interfa
e for doing so is by spe
ializing s11n_traits for a given type.As a spe
ial
ase40, SAM<X *> is single implementation, not intended to be further spe
ialized- see below!Note that in this
ontext, �
lient
ode� might a
tualy refer to an algorithm or fun
tor shipped with s11n - asfar as the
ore is
on
erned anything, in
luding
ommon �
onvenien
e� operations (e.g.
hild node
reation),whi
h happen before the the
ore
alls SAM, and while waiting on SAM, are �
lient
ode.�17.2.1 More about SAM<X*>A single spe
ialization of SAM<X*> does pointer-to-referen
e argument translation (sin
e its SerializableTypeswill be pointer types) and forwards them on to SAM<X> (unless they are 0, in whi
h
ase it simply returnsfalse - e�e
tively a failed de/serialization attempt). Thus pointers and referen
es to Serializables are internallyhandled the same way (where pra
ti
al/possible), as far as he
ore API is
on
erned, and both X and (X*)
annormally used inter
hangeably for Serializable types passed to de/serialize operations.The end e�e
t is that if a
lient spe
ializes SAM<Y>,
alls made via SAM<Y*> will end up at the expe
tedpla
e - the
lient-side spe
ialization of SAM<Y>, and the pointer will be dereferen
ed before passing it toSAM<Y>.Some
oders show a level of distrust for this �feature�, but pra
ti
e has shown that it is 100% non-intrusive,100% predi
table, and allows some tri
ks whi
h are otherwise di�
ult to a
hieve. In fa
t,
ode related to thisspe
ialization has not needed any maintenan
e sin
e its initial introdu
tion, a bit more than a year ago - it is apure ba
kground detail.Client
ode SHOULDNOT implement any pointer-type spe
ializations of s11n_api_marshaler<X*>41.Clients MAY implement su
h spe
ializations, but they're on their own in that
ase. As it is, if a
lient imple-ments a SAM<X*> spe
ialization the e�e
ts may range from no e�e
t to a very di�
ult-to-tra
k des
repen
ywhen some pointer types aren't passed around the same as others. Then again... maybe that's exa
tly thebehaviour you need for type (Spe
ialT*)... so go right on ahead, just be aware of s11n's default handlingof SAM<X*>, and the impli
ations of implementing a pointer spe
ialization for a SAM. Su
h tri
ks are notre
ommended, and related problems
ould be extremely di�
ult to tra
k down later.17.3 Histori
al
hangesIn 1.1.3, the following signi�
ant
hanges were made to s11n_api_marshaler<>:
• DataNodeType templatized type was moved from the fun
tions to the
lass, to allow for full
lient-sidespe
ialization.
• Moved from an anonymous namespa
e into the s11n namespa
e. The anonymous namespa
e appears tobe unne
essary, and may never have been ne
essary. (It was there for a reason, but that was soooo longago...)18 s11nlite spe
i�
s"People don't do what they believe in. They just do what's most
onvenient, then they repent."Bob DylanThe s11nlite API provides a simpli�ed interfa
e into s11n. It is intended to simplify the majority of
lient-side
alls into the
ore library, primarily by abstra
ting away the Data Node Type whi
h is so prevalent in the
oreAPI. The �lite� API also wraps up the s11n::io API, so it provides a simpler interfa
e into i/o as well. s11nliteis intended for �top-level�
lient use, whereas the
ore library is more suitable for implementing the internals ofspe
i�
 de/serialization algorithms.This se
tion
overs s11nlite-spe
i�
 behaviours whi
h are not
overed by the
ore library.While s11nlite is a
omplete
lient-side interfa
e into s11n, s11nlite does very little work itself: it mainly forwards
alls to the
ore and i/o layers.40Now that i re-read this, this is one of extremely few �spe
ial
ases� in s11n. i have a spe
ial type of non-love for �spe
ial
ases�in general, and avoid them in the interfa
es at all
osts.41... without mu
h
onsideration, that is. There are
on
eivable uses for this, but they seem to be well beyond the realm of�
ommon serialization needs�, and thus we won't dwell on them here.75

18.1 Why use s11nlite?(Please also see the notes about s11nlite in se
tion 2.5.)By using s11nlite as the main
lient-side interfa
e,
lient
ode
an be signi�
antly simpli�ed over using the
ores11n and s11n::io APIs dire
tly. The main di�eren
e is a lot less typing of template types. Also, the bene�tof fewer dire
t dependen
ies on s11n-related types should not be underestimated. A
on
rete example of thesesimpli
ations,
ompare the following two fun
tion signatures:s11n::serialize<s11n::s11n_node,MyType>(destnode, sr
obj);s11nlite::serialize<MyType>(destnode, sr
obj);The di�erent might appear trivial, but trust me, the �rst form gets annoying really qui
kly.A
tually, in the
ase of monomorph types and the base-most types in a hierar
hy of Serializables, C++'sautomati
 template type dedu
tion
an eliminate the need to be expli
it about MyType when using the �rstform. The got
ha is in polymorphism: we need to be sure to base the base-most MyType in the hierar
hy, so wereally should be expli
it when using the �rst form, or the proper underlying helper types might not be sele
ted(those asso
iated with the base interfa
e in the hierar
hy), whi
h ends up leading to
onfusing
ompile errorsor potentially runtime errors.Some developers might re
ommend swapping the order of the template args in s11n::somefun
<NodeT,OtherT>(),as node types are almost always monomorphi
 and thus their types
an be a

urately dedu
ed. That wouldlead to
lient-side
alls like:s11n::serialize<MyType>(destnode, sr
obj);Early versions of s11n had this
onvention, with the NodeType always as the trailing arg. As it turns out,always having the node obje
t as the �rst fun
tion argument �ts in more
onsistently in the overall API, and iwant the template parameters to be in the same order as the fun
tion arguments.s11nlite was primarily developed to simplify this type of detail, but also to provide a link to the i/o layer, asthe
ore is blissfully unaware of the pains of i/o.18.2
lient_api<NodeType>As of s11n 1.1.0, s11nlite is based upon a
lass
alled
lient_api<>. This was done primarily be
ause experien
eshowed that s11nlite was not extendable by
lients without literally ha
king in their desired features. A shortba
kground story, to put this into
ontext:As an experiment, in late 2004 i ha
ked together a
opy of s11nlite whi
h used the network layer of the P::Classesproje
t (http://p
lasses.
om). This allowed saving over ftp, for example. The problem was,
lients wishingto use it had to know spe
i�
ally about it (
alled ps11n), and write to its API, whi
h was the exa
t same ass11nlite's ex
ept for the namespa
e. The end result was two usage-
ompatible, data-
ompatible, but
ompletelyindependent libraries.Fa
toring out the main s11nlite fun
tionality into a sub
lassable type provides a solution whi
h allows alls11nlite
lient
ode to stay inter-
ompatible, even when they ea
h use
ustomized ba
k-ends (i.e., their own
lient_api<> sub
lass, or one provided by a 3rd party library).Mu
h of the s11nlite API internally uses an instan
e of
lient_api<>, whi
h
an be fet
hed or set via thefollowing fun
tions from the s11nlite namespa
e
lient_interfa
e & instan
e();void instan
e(
lient_interfa
e * newinstan
e);(
lient_interfa
e is a typedef for
lient_api<s11nlite::node_type>.)See the API do
s for the
onventions and rules, in parti
ular the ownership rules for the setter.This feature allows
lients to use the s11nlite API as a front-end for
ustomized extensions to s11nlite. Withoutthis support, extending s11nlite while maintaining
ross-
lient API
ompatibility at the same time is essentiallyimpossible.The end result is: by extending
lient_api<>,
lients
an write
ustom s11nlite-like APIs, or s11nlite-
ompatible extensions, with very little e�ort. With a bit of additional e�ort a
lient
an even support multipleba
k-ends at on
e, though i honestly
an't think of a useful
ase for this.76

18.3 File formatsThe lite library likes to hide the detail of �le formats from you, but does allow you to spe
ify your preferredformat:s11nlite::serializer_
lass(�ClassNameOfSerializer�);This preferen
e stays in e�e
t until set again. Unlike version 1.0, in 1.1+ it is not persistant a
ross appli
ationsessions be
ause it was simply too annoying to have ea
h app overwrite the default of every other app.We
an
reate a Serializer of a given
lass with:s11nlite::serializer_interfa
e * ser = s11nlite::
reate_serializer(�ClassName�);This will return 0 on error, and does not set the library-wide preferen
e.The
lassname passed to these fun
tions must be a string asso
iated with a Serializer
lass, either built-in ordynami
ally loadable (if plugins support is enabled in your s11n). Most Serializers are registered under threenames: their formal name, a
onvenien
e name, and their �magi

ookie�. For example, the following
alls allhave the same e�e
t:s11nlite::serializer_
lass(�s11n::io::funtxt_serializer�); // formal names11nlite::serializer_
lass(�funtxt�); //
onvenien
e names11nlite::serializer_
lass(�#SerialTree 1�); // magi

ookieIt is not re
ommended to use the
ookies dire
tly in
lient
ode. The formal names are more preferred, but
onvenien
e names are there for a reason -
onvenien
e (espe
ially for use when passing the
lass names as
ommand-line arguments). By
onvention, the
onvenien
e name is always the
lass name of the Serializer,stripped of namespa
e and the _serializer su�x (if any).It is up to ea
h Serializer to initially register any names under whi
h it is available. Registering the
ookie isrequired for dynami
 �le dispat
hing to work, but the other names are
onventionally registered as well (mainlyfor potential
lient-side use).18.4 Simple
on�g �less11n 1.1.3 adds the s11nlite::simple_
onfig
lass. It simply a
ts as a wrapper for a single s11n node, loadingit upon
onstru
tion and saving it upon destru
tion. Here is how to use it:#in
lude <s11n.net/s11n/simple_
onfig.hpp>...s11nlite::simple_
onfig
onfig(�MyApp-1.0�);using std::string;typedef s11nlite::simple_
onfig::node_traits TR;string somestring = TR::get(
onfig.node(), string(�somekey�), string());s11nlite::serialize_subnode<MyType>(
onfig.node(), mySerializableObje
t);The
tor will attempt to load the �le $HOME/.MyApp-1.0.s11n. If $HOME
annot be resolved (via a
all to::getenv()) then the
tor will throw a std::runtime_error. If the internal
all to s11nlite::load_node(...)fails then we
heerfully assume the �le didn't exist and
reate a new one. The �le will be saved when
onfiggoes out of s
ope. If the �le
annot be saved, too bad - there is no way to signal this without having the dtorthrow (whi
h is generally a bad idea in C++).The member fun
tion node() return an s11nlite::node_type referen
e, and any serializable data may be putinto it or fet
hed from it.
77

18.5 mi
ro_api<SerializableType>This
lass is one of those, �i'm bored, let's try this out,� kind of things. It's main intention is to save a smallbit of typing (pun unavoidable) when loading or saving the same basi
 type of Serializable over and over again(as i often do in test
ode). Here's an example of how to use it:#in
lude <s11n.net/s11n/mi
ro_api.hpp>...typedef s11nlite::mi
ro_api<MyType> mi
ro;mi
ro.save(myobj, �myfile�);...MyType * m = mi
ro.load(�myfile�);It uses s11nlite to do most of the work, so it inherits options like the default �le format. To make the
lass atad more useful, it also two other minor features. First, ea
h
an use its own �le format, set in the
tor or viami
ro.serializer_
lass(
lassname). Se
ondly, it has simple bu�ering support:mi
ro.buffer(myobj); // same as save(), but is stored in an internal bufferstd::istringstream is(mi
ro.buffer());MyType * m = mi
ro.load(is);mi
ro.
lear_buffer(); // on
e it's not needed any more19 Memory management and obje
t relationships"Any day now, any day now, I shall be released."Bob DylanMemory management is an important topi
 for users of s11n. This
hapter will try to go into mu
h more detailthan i'd really
are to about the whens, hows, whys, et
., of memory management in s11n. This se
tion issomewhat related to se
tion 16, ex
ept that that se
tion
overs memory management in the fa
e of ex
eptions,as opposed to �normal use.�19.1 Data nodesData nodes, by
onvention, are responsible for their own memory management. This means that they own theresour
es used to store their properties and they own their
hildren. How they do that is unde�ned, but thatthey do it is a given.For most purposes, data nodes do not need any spe
ial memory management. The notable ex
eption is when
reating an unparented node on the heap (using new or node_traits::
reate()). In this
ase it is often desirableto use a std::auto_ptr to hold the pointer until you have a pla
e to reparent it, as in this example:typedef s11n::node_traits<NodeType> NTR;std::auto_ptr<NodeType> n(NTR::
reate(�fred�));... perform some operation whi
h might fail on su

ess, do: ...NTR::
hildren(parentnode).push_ba
k(n.release()); // pass ownership to parentnode19.2 Containers of pointersLet's
onsider this simple
ase:typedef std::list<int *> IList;IList * il = s11nlite::load_serializable<IList>(�file1.s11n�);78

That looks all inno
ent, but there are some potential pitfalls here. The �rst, most obvious, is that the
allerneeds to not only delete il, but also the pointers
ontained in il. The library has some utility fun
tions fordoing this:s11n::free_list_entries(*il);delete il; // it's now emptyThat seems simple enough, but let's look at a subtely more
omplex
ase:typedef std::list<IList *> IListList;IListList * ill = s11nlite::load_serializable<IListList>(�file2.s11n�);...s11n::free_list_entries(*ill); // deletes all pointersdelete ill;The major error here is, we've leaked the
ontents of ea
h and every sub-list. We properly deleted the allo
atedsub-lists, but not their
ontained parts. A
lassi
 memory leak.This is the main problem with
ontainer of pointers vis-a-vis deserialization, espe
ially when ex
eptions arethrown during deserialization. Consider:typedef std::list<MyType *> MyList;During deserialization, maybe the fourth entry in the list fails to deserialize. What do we do here?Even if deserialization su

eeds, someone has to delete those pointers someday. Presumably, this is alreadya

ounted for in your appli
ation, so the only �danger zone� for these pointers is between the time they areinstantiated and the time s11n gives them ba
k to your appli
ation. In that �danger zone�, a mispla
ed ex
eption
ould potentially lead to a memory leak.As of version 1.1.3, the internal ex
eptions handling was gutted and rewritten to a

omodate this type ofsituation. A �
leanup fun
tor� is now asso
iated with ea
h Serializable type (se
tion 6.2.1) to take
are ofdeallo
ating obje
ts when a deserialization operation fails. The fun
tor is designed su
h that spe
ializations areput in pla
e to re
usively walk any
ontained sub-parts, so that we
an properly
lean up even the followingtype without spe
ial
lient-side a
tion:list< multimap< int, map< string, ve
tor < int *> > > >Clients needing to
lean up pointers su
h a type
an do the following:s11n::
leanup_serializable(myListOfMultiMapOfIntToMapOfStringToVe
torOfPointerToInt);Be aware that this is not a general-purpose
lean-up me
hanism: is only works properly if all types involvedare registered Serializers with proper
leanup fun
tors installed.When deserializing non-standard
ontainers, you may need to install your own
leanup fun
tors to be sure thatentries
an be walked and
leaned up if needed.Some have suggested using smart pointers to elimintate this type of problem, but i don't feel good aboutimposing a spe
i�
 smart pointer implementation on s11n
lients. It is something to
onsider, nonetheless.19.3 Cleaning up before deserializationWhile the
ore library will never dire
tly do this, it is possible, even sometimes desirable, to do via
lient-side
ode: MyType myobj;deserialize(mynode, myobj);... use myobj ...deserialize(anothernode, myobj); // obtain a new state in old obje
t79

There is nothing fundamentally wrong with this - it is
on
eptually identi
al to a
opy/assigment
onstru
tor- but there is one immediate impli
ation for authors of deserialization operators: the operators should behavelike
opy and assignment operators.Put simply, deserialization algos must be sure to free up any resour
es whi
h the deserializing obje
t owns whenthey take on a new state as a result of deserialization. A
ommon example would be a type whi
h maintains alist of
hildren or values. A simple demonstration of the
opy/assignment metaphor:T t1;... populate t1 ...T t2;... populate/use t2 ...t2 = t1;Assuming �owning
opy semanti
s�, at the assignment t2 would free up any
hildren it
urrently owns then
opythose from t1. The same applies to deserialization, whi
h is logi
ally similar to a
opy/assignment
onstru
tor.19.4 Cleaning up after failed deserialization19.4.1 Understanding the problemIt would be ni
e if we
ould add text similar to the following in the API do
s for every deserialization algorithm:If this fun
tion fails, the target deserializable is not modi�ed and any allo
ated resour
es are de-stroyed.The problem is, we
an't. After going through the
ode very
arefully, trying to �gure out where to try, whereto
at
h, and what to
lean up after doing so, it be
ame
lear that s11n's ar
hite
ture blinds it in this regard.Consider this simple
all:typedef std::list<T *> TList;TList list;deserialize<NodeType,T>(mynode, list);If that fails, we might expe
t the list deserialization algorithm to be able to
lean up any pointers it allo
ates.This is a reasonable wish, but it
annot be ful�lled. If you read se
tion 19.2, you probably see why, but let'sexpand on it for a moment:typedef std::list<TList *> TListList;TListList * tll = deserialize<NodeType,TListList>(mynode);Let's say we have a serialized TListList
ontaining 3 TList pointers. Deserialization of the �rst two works,so tll.size() == 2. We get to the third one and it throws for some reason. The list deserialization algo
an
at
h that... but then what? The natural rea
tion would be to
lean up the whole list of allo
ated obje
ts.However, if we do that, we end up deleting the TList pointers, but not the (T*) they
ontain.The
at
h is, deserialization of the TList and TListList types both go through the exa
t same algorithm, andthe algorithm has no way of dire
tly knowing what it is deserializing - it simply passes the requests to the s11n
ore, whi
h will route them through the algorithms registered for the given types.This doesn't just a�e
t
ontainer types, but any types whi
h hold unmanaged pointers to memory allo
atedduring deserialization. Only the algorithms whi
h work �self-
ontained�, without passing any
alls on to otheralgos or the
ore, have any
han
e at all of knowing what they need to
lean up on error. Container-relateddeserialization algorithms must, by their very nature, pass on
alls to other algorithms, and therefor
annotnormally be self-
ontained.The end e�e
t is, they
annot know if they've just failed to deserialized a (T*), list<T*>, or map<int,Foo<multimap<double,T*>> >,and therefor deallo
ating
an never be done safely from that level of the API. Unfortunate, but seemingly un-avoidable. The burden of
leaning up on failure then shifts to
ode whi
h knows about the overall stru
ture ofthe data (i.e., the
lient). Or does it ... ? 80

19.4.2 A

omodating the problem, approa
h 1 (don't do this!)To extend the above example, let's show where this
leanup needs to be done. In short, the only pla
e whi
h it
an be reliably done is from some point whi
h has enough information to know the underlying stru
ture of thedeserialized obje
t. In our
ase, that means a point at whi
h we know about TListList. Given that, we mightdo something like the following in our deserialization operator:try {... deserialize our TListList ...}
at
h(...) {for ea
h myTList in myTListList {// free the (T*) in ea
h list}throw;}19.4.3 A

omodating the problem, approa
h 2 (do this instead!)Here is a mu
h more general way of managing this problem, at least within the
ontext of Serializables:try {... deserialize our TListList ...}
at
h(...) {s11n::
leanup_serializable(myTListList);throw;}Now we don't
are if myTListList is a pointer or referen
e. We also don't
are if it's a
ontainer or an integeror a FooManChoo. As long as the type meets the requirements for the s11n's
leanup fun
tor me
hanism, thenthis will work. The majority of Serializable types need no spe
ial support or have that support built in totheir registration pro
ess. In this spe
i�

ase,
leanup_serializable() will empty out myTListList and allsublists, regardless of how many lists or how deeply they are nested, deallo
ating any pointers in the lists as itgoes. See se
tion 6.2.1 for more details.19.5 Understanding �serialization ownership�s11n was originally designed to enable the serialization of hierar
hies of obje
ts. As in any OO design, therelationships of resour
e ownership are important to
on
retely de�ne, su
h that users of the library and thelibrary itself know when ea
h one is in
ontrol of a resour
es (normally this means, �who's going to delete it?�).While s11n's ideas of ownership normally mat
h up ni
ely to hierar
hies of
lient-de�ned types, there are
aseswhere users will need to give some thought to questions like:
• For shared resour
es, who is responsible for de/serializing them?
• How do we de/serialize relationships with shared resour
es in su
h as way as to not de/serialize the sharedresour
es multiple times in one transa
tion?The general topi
 of �who is responsible for de/serializing ea
h part� is
alled �serialization ownership.� It isnot fundamentally di�erent from normal resour
e ownership but users must ensure that their de/serializationalgorithms' ideas of ownership jive with their internal ownership models, or Grief may show its ugly head. This
an range from dupli
ating obje
ts, leaking some of them, trying to use not-yet-deserialized obje
ts, and so on.So pay attention... 81

19.5.1 The basi

ase: obje
ts own their own resour
esIn many basi
 OO
ases, ownership of a resour
e belongs to the obje
t whi
h
ontains it. For example:
lass Foo {SomeT * m_t;publi
:Foo() : m_t(new SomeT) {}...};It is fairly obvious that ea
h Foo instan
e owns its own
opy of SomeT. If we want to de/serialize that member,we have no ownership-related questions, be
ause ea
h Foo owns his own SomeT. Thus our deserialize operatormight look something like this:delete this->m_t; // free up the old onethis->m_t = new SomeT; //
reate a new one to deser tos11n::deserialize_subnode<NodeType,SomeT>(sr
node, �somet�, *this->m_t);Or
ut out the delete/new and hope that SomeT implements
areful
leanup when we re-deserialize it.We
ould also polymorphi
ally deserialize m_t if we need to, by repla
ing the bottom two lines of that
odewith:
onst NodeType *
h = s11n::find_
hild_by_name(sr
node, �somet�);this->m_t = s11n::deserialize<NodeType,SomeT>(*
h);The point is, though, that we own m_t and
an (should) thus make sure it's
lean before deserializing. In this
ase, our �serialization ownership� is exa
tly in line with our obje
t's ownership of m_t, so we don't have anyspe
ial
on
erns here.19.5.2 Serializing pointers to data we don't ownLet's say we have a
lass with this private member:list<
onst SomeT *> m_list;Remember that we
annot dire
tly deserialize
ontainers of
onst obje
ts, as we
an't
hange (deserialize) theirstates, so that is our �rst problem. The se
ond problem is, in this
ase, this obje
t does not own the listedobje
ts, but we still need to serialize our asso
iation with them.This is a tri
kier
ase that simple in-obje
t ownership. It
an be satsifa
torily solved, but ne
essarily requiressome
lient-side help. Let's outline how we might go about making that list persistant.In the absolute simplest
ase, we
an deserialize to a list<SomeT*> (non-
onst) and then transfer the pointersto wherever we need to immediately afterwards, dire
tly as part of our overall deserialize algo.In a more
omplex
ase, we might need to store a
entral registry of obje
ts and our relationships to them. Hereis one potential way to do that...First o�, we will make some assumptions:
• We have a
entral registry/pool of pointers to shared obje
ts. Our list
ontains pointers to those obje
ts.
• The registry asso
iates a unique key with ea
h obje
t and provides an API for sear
hing by key or obje
tpointer.Certain
lients may not need these features, and some may need more. We will start with these, however, todemonstrate a fairly straightforward way of serializing �links� to �external� obje
ts.When saving our appli
ation's state, we will presumably save the shared obje
t pool at the same time. This isfairly trivial to a
hieve in many
ases. Let's assume that our our registry internally uses a std::map<Obje
tKeyType,Obje
tType*>,or similar, to store the pool, and that all
ontained types are Serializable. In that
ase, we
an simply use built-ins11n support to do what we need: 82

#in
lude <s11n.net/s11n/proxy/pod/int.hpp> // assume Obje
tKeyType == int#in
lude <s11n.net/s11n/proxy/std/map.hpp> // default map proxy#in
lude �Obje
tType_s11n.hpp� // hypotheti
al s11n registrationtypedef map<Obje
tKeyType,Obje
tType*> RegistryMap;RegistryMap map;... populate map ...s11n::serialize(targetnode, obje
t_map);Not too di�
ult.Now, deserialization of the map inherently keeps our keys asso
iated with the obje
ts, su
h that deserializationof our downstream obje
ts
an �nd the obje
ts by key (whi
h they serialized) later on.When we serialize our member list, the work is fairly simple (a
htung: pseudo
ode):typedef std::list<Obje
tKeyType> KeyList; // string/ulong/et
 are likelyKeyList klist;for ea
h item in m_list {klist.push_ba
k(Registry::get_key(item));}s11n::list::serialize_streamable_list(destnode, klist);Or something along those lines. The idea is, we have a way of looking up some unique key asso
iated with ea
hobje
t, and we simply store a list of those keys.For deserialization, it's just the opposite, ex
ept that now we
an populate that list<T
onst *>:this->m_list.
lear(); // important to avoid potential extra entries!KeyList klist;s11n::list::deserialize_streamable_list(sr
node, klist);for ea
h item in klist {this->m_list.push_ba
k(Registry::get_obje
t(item)); // may be (T
onst *)}It is not always that simple, however, as some obje
ts may not be suitable for this type of lookup, or this typeof lookup may not exist in your framework, or might be non-trivial (or non-value-adding) to add. In any
ase,the problem of handling �links� to external data, or de/serialize
onst data,
an often be handled by breakingdown the de/serialization into multiple parts. Remember that algorithms
an be hidden behind others, so thisneed not a�e
t the way
lients serialize your types, but may a�e
t the internal implementations of the de/seralgos.19.5.3 Two-way parent/
hild relationshipsA fairly
ommon
ase for whi
h the above is not a suitable solution is where parent and
hild obje
ts have anexpli
it two-way relationship. One
ommon problem here is
ommuni
ating the parent pointer to a new
hildduring deserialization. This is normally not as problemati
 as it may initially seem, however, in parti
ular ifthe parent owns the
hildren pointers. In this
ase,
hildren do not serialize the link to their parent. Instead,the parent serializes the list of
hildren as normal. During deserialization, the parent does the following:deserialize list of
hildren;for ea
h
hild in list {
hild->set_parent(this);}This of
ourse assumes that the
hild does not need the parent in order to fully deserialize.Doing this sort of post-deserialization pro
essing is not at all out of line in using s11n. In many
ases it isdesirable to manipulate an obje
t dire
tly after deserializing data, in parti
ular when it
omes to establishingrelationships with obje
ts whi
h were not part of the deserialization operation. For example, while we
annotserialize a network
onne
tion, we
an serialize the
onne
tion parameters, and deserialization
ould re-establisha
onne
tion based on those parameters. 83

20 Using pluginss11n has rudimentary support for so-
alled plugins, whi
h basi
ally means it
an load new types at runtime.The primary reason this feature is to allow us to deserialize types whi
h we don't know about at the time aninput stream is read. This means that the simple a
t of deserialization may in
lude arbitrary new types into anappli
ation.As it turns out, the approa
h used for loading Serializable types dynami
ally is the same used as loading almostany other type dynami
ally. This means that the s11n plugins support inherently supports a wide range of usesunrelated to deserialization. This se
tions is about �nding out how to make use of them.The plugins layer is an optional feature, not part of the
ore library. The
ore makes use of the plugins layer ifit is there, but
an also work without it (but without the ability to load
lasses from DLLs). The i/o layer
analso make use of the plugins module to load new �le handlers on demand.20.1 Building plugins supportIf you are using the supplied build tree, the plugins module is automati
ally enabled if the
on�gure s
ript �nds aDLL loader it
an use. On Unix platforms this would be either libltdl (preferred) or libdl (the de fa
to Unixstandard). On Windows, LoadModule() is used. If there are problems building it, you
an disable it by passing--without-plugins to the
on�gure s
ript. See the header �les s11n_
onfig.hpp and plugin_
onfig.hppfor the ma
ros related to
on�guring plugin support (those �les are both generated by the Unix-side
on�gurepro
ess, and may need to be hand-edited on Win32 systems).20.2 Win32 A
htungThe plugins
ode fundamentally works under Windows, but its usefulness is signi�
antly more limited thanunder Unix platforms be
ause of Win32's requirement that we expli
itely export symbols whi
h we want tobe published from a DLL. This means that any types whi
h want to parti
ipate in the plugins model must beexported using the appropriate API. See export.hpp for the s11n-related ma
ros for this.The s11n library does not
urrently (1.1.2) work as a DLL under Windows be
ause of this requirement to exporteverything.A related thing to keep in mind is that the
lassloader model requires that proje
ts building under MS VisualStudio (or similar) will need to turn on the �keep unreferen
ed
ode� option in their DLLs, or fa
tory registrationswithin the DLLs will never happen (meaning the plugins layer won't do anything useful).20.3 The APIThe whole plugin layer is
omprised of only one
lass and 4 free fun
tions in the s11n::plugin namespa
e:
lass path_finder;path_finder & path();string find(
onst string & name);string open(
onst string & name);string dll_error();The API provide no support for examining the innards of a DLL, only for �nding and opening them. This isbe
ause the layer is spe
i�
ally intended to support
lassloaders of the type used by the s11n
ore. Under thatmodel, DLLs publish no spe
i�
 symbols and we do not keep a handle to them.Opened DLLs are never
losed by s11n, as doing so is fundamentally dangerous. When your s11n-using appli-
ation
loses, the OS will free up any DLLs the appli
ation opened. This is the only 100% reliable way to dealwith opening arbitrary DLLs, be
ause the plugin layer
annot reliably know (nobody
an) whi
h DLL-providedresour
es are in use when it
loses a DLL. (If you're interested in losing a long debate, send me an email arguingthat it is possible, in the generi

ase, to know when it is safe to
lose a DLL.)To �nd out if your libs11n has plugins support enabled, you
an use one of the supplied
on�guration ma
ros:#in
lude <s11n.net/s11n/s11n_
onfig.hpp>#if s11n_CONFIG_ENABLE_PLUGINS 84

... do plugin-enabled
ode ...#else# ... non-plugin
ode ...#endif20.4 Basi
 UsageIn fa
t, there is only �basi
 usage�, not �advan
ed usage.�Most
lients will not need to a

ess the plugin layer dire
tly, but if they wish to, it is intended to be usedsomething like this:#in
lude <s11n.net/s11n/plugin/plugin.hpp>...using namespa
e s11n::plugin;using namespa
e std;string where = open(�my_dll�);if(where.empty()) {
err < < �not found or error: � < < dll_error() < <
err;} else {
out < < �Found and opened DLL: � < < where < <
err;}If open() returns an empty string, one of two things have happened:1. No su
h �le was found in the sear
h path.2. The �le was found but opening the DLL failed. This normally happens be
ause of in
ompatible libraryversions, due to missing dependen
ies or symbols, or the �le is not a DLL at all.In either
ase, dll_error() should return a des
riptive string explaining the problem (it returns the lib[lt℄dlerror string, if possible). The value returned by dll_error() is only valid for one
all. Per long-standinglibdl
onventions, the internal pla
eholder for the error message is
leared after this fun
tion is
alled, su
hthat it is guaranteed to return an empty string if open() su

eeds or if dll_error() is
alled twi
e withoutan intervening
all to open(). On Win32 platforms dll_error() returns a string
ontaining the error
odereturned by LoadModule().The sear
h path
onsists of both dire
tories and �le su�xes, whi
h may be manipulated like so:path().add_path(�/home/me/lib/mylib/plugins�);path().add_extension(�.so�);Note that there is nothing about the path_finder
lass whi
h restri
ts it to being used to �nd only DLLs.Histori
ally speaking, path_finder has often been used as a �nder for images, DLLs, and XML �les. Forexample:path_finder p;p.add_path(�/home/me/.myapp�);p.add_extension(�.xml:.
onfig:.s11n�);string
onfigfile = p.find(�main�);That will return a non-empty string if it �nds and of main.xml, main.
onfig, or main.s11n, in that order, inthe sear
h path.Contrariwise, the free fun
tions in the s11n::plugin namespa
e are restri
ted to DLL-related paths and �leextensions, by
onvention.A default set of library sear
h paths is de�ned at build-time. Likewise, the �le extension for DLLs is set atbuild-time and depends on your platform. For Win32 it is �.dll� and on Unix platforms it is
urrently hard-
oded to �.so�, whi
h is not
orre
t for some Unix-like platforms (e.g., Darwin uses �.dynlib�). These settingsare de�ned in plugin_
onfig.hpp, and
an be modi�ed at runtime using the obje
t returned by path().85

21 s11n-related utilities�I get by with a little help from my friends.�The BeatlesThis se
tion list the utility s
ripts/appli
ations whi
h
ome with s11n, plus some tools whi
h are known to beuseful with s11n but are not shipped with it.21.1 s11n
onvertA
htung: the DLL-loading features of s11n
onvert 1.0 are not yet ported to 1.1 due to
oderefa
toring.Sour
es: sr
/
lient/s11n
onvert/main.
ppInstalled as PREFIX/bin/s11n
onverts11n
onvert is a
ommand-line tool to
onvert data �les between the various formats s11n supports.Run it with -? or --help to see the full help.Sample usages:Re-serialize input�le.s11n (regardless of format) using the �parens� serializer:s11n
onvert -f inputfile.s11n -s parens > outfile.s11nConvert stdin to the �
ompa
t� format and save it to out�le,
ompressing it with bzip2
ompression:
at infile | s11n
onvert -s
ompa
t -o outfile -bzNote that zlib/bzip2 input/output
ompression are supported for �les, but not when reading/writing from/tostandard input/output42. You may, of
ourse, use
ompatible 3rd-party tools, su
h as gzip and bzip2, tode/
ompress your s11n data. Also note that
ompression is only supported if s11n is built with the optionalzfstream supplemental library and that library supports the desired
ompression te
hnique.21.2 s11nbrowsers11nbrowser is a Qt-based GUI appli
ation for reading arbitrary data saved with s11nlite. It is not shipped aspart of s11n, but is distributed as a separate appli
ation, available from:http://s11n.net/s11nbrowser/22 Mis
ellaneous features and tri
ks�It sli
es! It di
es! It
uts through a tin
an as easily as it
uts through a tomato!�Advertisement for Ginsu(tm) knivess11n has a number of features whi
h may be useful in spe
i�

ases. While some of them require support
odefrom �outside the s11nlite sandbox�, a few of them are tou
hed on here.22.1 Saving non-SerializablesLet's say we've got a small main() routine with no support
lasses, but whi
h uses some lists or maps whi
hwe would like to make persistant. No problem - simply use the various free fun
tions available for saving su
htypes (e.g. se
tion 10.4). This
an be used, e.g. as a poor-man's
on�g �le:42Sorry, we don't have an in-memory de/
ompressing streambu�er.
86

typedef std::map<std::string,std::string> ConfigMap;ConfigMap theConfig;... populate it ...// save it:s11nlite::node_type node;s11n::map::serialize_streamable_map(node, theConfig);s11nlite::save_node(node, �my.
onfig�); // also has an ostream overload...// load it:s11nlite::node_type * node = s11nlite::load_node(�my.
onfig�); // or istream overloadif (! node) { ... error ... }s11n::map::deserialize_streamable_map(*node, theConfig);delete(node);// theConfig is now populatedAlternately, simply use s11nlite::node_type as a primitive
on�g obje
t or the s11nlite::simple_
onfigtype.If the Con�g obje
t is a Serializable obje
t (or a proxied one) it be
omes even simpler: simply use thesave/load() or de/serialize() fun
tions dire
tly on the obje
t. For example, to proxy the above map,we
ould simply insert the following
ode before we attempt to de/serialize the map:#in
lude <s11n.net/s11n/proxy/std/map.hpp>#in
lude <s11n.net/s11n/proxy/pod/string.hpp> // map's
ontained types must be serializable,tooIn that
ase, we
ould use the standard de/serialize fun
tions on the map:s11nlite::save(theConfig, �my.
onfig�);...ConfigMap * m = s11nlite::load_serializable<ConfigMap>(�my.
onfig�);if(! m) { ... error: file not found or deser failed ... }theConfig = *m;delete m;There are other ways to deserialize the Con�gMap obje
t, su
h as using:s11nlite::node_type * node = s11nlite::load_node(�my.
onfig�);if(! node) { ... error ... }s11nlite::deserialize(*node, theConfig);delete node;22.2 Saving appli
ation-wide state and SingletonsIt is sometimes useful to be able to serialize the state of an appli
ation though we have no spe
i�
 obje
t whi
hholds all appli
ation data. This
an be handled by de�ning a simple Serializable whi
h saves and loads all globaldata via whatever a

essors are available for the data. The same approa
h
an be used for Singletons, whi
hwe would not normally be able to dynami
ally load via deserialization due to their Singletonness. An exampleof how to set this up:stru
t myapp_s11n // our �pla
eholder� Serializable type{ 87

template <typename NodeT>bool operator()(NodeT & node)
onst // Serialize operator{ typedef s11n::node_traits<NodeT> TR;TR::
lass_name(node, "myapp_s11n");... use algos to save app's shared state ...return true;}template <typename NodeT>bool operator()(
onst NodeT & node) // Deserialize operator{ ... use algos to restore app's shared state ...return true;}};Then register it as a Serializable, whi
h is simpler than for most proxy
ases be
ause our �proxy� is a
tually aSerializable implementing the so-
alled Default Serializable Interfa
e:#define S11N_TYPE myapp_s11n#define S11N_TYPE_NAME "myapp_s11n"#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>To save appli
ation state, we simply need:myapp_s11n state;s11nlite::save(state, �somefile.s11n�);To load our app state we
an take a
ouple of di�erent approa
hes, but the most straightforward is probably:myapp_s11n * state = s11nlite::load_serializable<myapp_s11n>(�somefile.s11n�);if(! state) { ... error ... }delete(state); // no longer needed - it modified the global state for us.Or, if you want to get fan
y, perhaps something like:{ //
reate a s
ope to
ontain an auto_ptr<> obje
t...std::auto_ptr<myapp_s11n> ap(s11nlite::load_serializable<myapp_s11n>(�somefile.s11n�));if(! ap.get()) { ... load failed ... }}Or, alternately:using namespa
e s11nlite;std::auto_ptr<s11nlite::node_type> node(load_node(�somefile.s11n�));if(! node.get()) { ... error ... }myapp_s11n state;deserialize(*node, state);
88

22.3 Saving lib state plus arbitrary
lient-spe
i�ed stateExtending the previous example... i re
ently had a
ase whi
h evolved an interesting tri
k:My library provides Serializables but no save()/load() fun
tions, be
ause
lient apps tend to have their owntop-level save/load fun
tions. The problem i eventually ran into was that i have a wide variety of unrelatedSerializables, and i wanted a
ommon way to save them and my lib state. The reason was simply organizational:my
lient-side data had dependen
ies on the lib-side data, and i wanted them to be saved together. This wasn'ta problem, per se, but it lead to a lot of
ode dupli
ating the same work. The solution was to indeed addload()/save() support at the base-most library level, but do it in a way whi
h allows the
lients to bundlearbitrary data with the library data.Assuming we have a fun
tion, my_lib_data(), whi
h returns a referen
e to a library-wide set of data, here'swhat a lib-level save() fun
tion might look like:template <typename UserDataT>bool save(std::ostream & os,
onst UserDataT & ud) {using namespa
e s11nlite;node_type n;return serialize_subnode(n, "my_lib_data", my_lib_data())&& serialize_subnode(n, "
lient_data", ud)&& save(n, os);}And we do the opposite for load():template <typename UserDataT>bool load(std::istream & is, UserDataT & ud) {using namespa
e s11nlite;std::auto_ptr<node_type> n(load_node(is));return n.get()&& deserialize_subnode(*n, "my_lib_data", my_lib_data())&& deserialize_subnode(*n, "
lient_data", ud);}Adding the string-based (�lename/URL) overloads is left as an exer
ise (tip: they
an be implemented in aslittle as two lines ea
h).22.4 �Casting� Serializables with s11n_
ast()Serializable
ontainers of �approximately
ompatible� types
an easily be �
ast� to one another, e.g. list<int>
an be �
ast� to a ve
tor<int>, or even a list<int> to a ve
tor<double*>. What exa
tly
onstitutes �ap-proximately
ompatible� essentially boils down to this: the two types must have the same or
ompatible s11nproxies installed. If the algorithms are written to a

omodate it, the pointerness of the
ontained types isirrelevant.Assuming we have registered the appropriate types, the following
ode will
onvert a list to a ve
tor, as long asthe types
ontained in the list
an be
onverted to the appopriate type:The hard way:s11nlite::node_type n;s11nlite::serialize(n, mylist); // reminder: might fails11nlite::deserialize(n, myve
tor); // reminder: might failOr, the slightly-less-di�
ult way: 89

s11nlite::node_type n;bool worked = s11nlite::serialize(n, mylist) && s11nlite::deserialize(n, myve
tor);Or, the easy way:bool worked = s11nlite::s11n_
ast(mylist, myve
tor);Done!As of version 1.1.3, myve
tor is guaranteed to be unmodi�ed if the
ast fails.It is important to remember that only types whi
h use
ompatible de/serialization algorithms may be s11n_
ast()to ea
h other. The reason is simply that the de/serialize operators of ea
h type are used for the �
asting�, andthey need to be able to understand ea
h other in order to transfer an obje
t's state.22.5 Cloning SerializablesGeneri

loning of any Serializable:SerializableT * obj = s11nlite::
lone<SerializableT>(someserializable);As you probably guessed, this performs a
lone operation based on serialization. The
opy is a polymorphi

opy insofar as the de/serialization operations provide polymorphi
 behaviour. To be
ertain that the proper
lassloader is used, you should expli
itely pass the templated type, using the base-most Serializable type of thehierar
hy. When
loning monomorphs this template typing is not an issue (unless the type may one day be
omea polymorph, in whi
h
ase not expli
itely spe
ifying the template parameter is potentially bug in waiting).22.6 Half-intrusive proxying and useless friendsThis is all theory: i've never tried it, as i don't like the �friend� feature.It might be tempting to try �half-intrusive� serialization by de�ning an obje
t whi
h does the serialization, butwhi
h has a

ess your type's private data. C++'s friend feature
ould of
ourse be used to solve this. Fromthe de
laration of MyType, instead of dire
tly befriending your
on
rete proxy type, try befriending it vias11n_traits<MyType> with:friend
lass s11n::s11n_traits<MyType>::serialize_fun
tor;This ensures that MyType's
ode doesn't
hange when his friends do. Sneaky, maybe, but seems reasonable.There is one small �y in the ointment, though: the de/serialize_fun
tor types are, in pra
ti
e, always the sametype, but are not guaranteed to be. That means that if we do this:friend
lass s11n::s11n_traits<MyType>::deserialize_fun
tor;Then we are likely to get a warning from the
ompiler
omplaining that we've befriended the same type twi
e.Note that it is always useless to befriend fun
tions in the s11n publi
 API, like de/serialize(), be
ause thosefun
tions don't a
tually tou
h your obje
ts: they only delegate to the types de�ned in s11n_traits<MyType>.22.7 zlib & bz2lib supportAs of 1.1, this support
omes in the form of an optional add-on library, zfstream, whi
h s11n will use if thebuild pro
ess �nds it. It
an be downloaded from the s11n.net downloads page:http://s11n.net/download/When enabled, s11n reads zlib/bz2-
ompressed data �les without having to know that they are
ompressed. Inthe interest of data �le portability/reusability, output �le
ompression is o� by default. Sin
e the feature
omesfrom an external library, the s11n API provides no dire
t way for users to enable
ompression for output �les.It
an be enabled
lient-side by doing the following: 90

#in
lude <s11n.net/s11n/s11n_
onfig.hpp>#if s11n_CONFIG_HAVE_ZFSTREAM#in
lude <s11n.net/zfstream/zfstream.hpp>#endif...#if s11n_CONFIG_HAVE_ZFSTREAMzfstream::
ompression_poli
y(zfstream::GZipCompression);#endifSin
e s11n::io uses zfstream to
reate �le output streams, s11nlite will use the poli
y spe
i�ed by zfstream.All fun
tions in s11n's API whi
h deal with input �les transparently handle
ompressed input �les if the
ompres-sor is supported by the underlying framework, regardless of the poli
y set in zfstream::
ompression_poli
y():see zfstream::get_istream() and get_ostream() if you'd like your
lient
ode to do the same. Note that
ompression is not supported for arbitrary streams, only for �les. Sorry about that - we don't have in-memoryde/
ompressor streambu�er implementations, only �le-based ones (if you want to write one, PLEASE DO! :).As a general rule, zlib will
ompress most s11n data approximately 60-90%, and bzip often mu
h better, butbzip takes 50-100% more time than zlib to
ompress the same data. The speed di�eren
e between using zliband no
ompression is normally negligible, and loading large gzipped �les
an a
tually be slightly faster thanusing no
ompression. Bzip, however, is noti
ably slower on medium-large data sets.As a �nal tip, you
an enable output
ompression pre-main(), in
ase you don't want to muddle your main()with it, using something like the following in global/namespa
e-s
ope
ode:stati
 int bogus_pla
eholder = (zfstream::
ompression_poli
y(zfstream::GZipCompression),0);That simply performs the
all when the pla
eholder var is initialized (pre-main()).22.8 Using multiple data formats (Serializers)It is possible, and easy, to use multiple Serializers, from within in one appli
ation. s11nlite likes to hide thisdetail from us, but allows us to set the default Serializer
lass and load Serializers by
lass name at runtime.Traditionally, loading nodes without knowing whi
h data format they are in
an be
onsiderably more workthan working with a known format. Fortunately, s11n handles these gory details for the
lient: it loads anappropriate �le handler based on the
ontent of a �le. (Tip:
lients
an easily plug in their own Serializers: sees11n/io/serializers.hpp for the API.)Saving data to a stream ne
essarily requires that the user spe
ify a format - that is,
lient
ode must expli
itelysele
t its desired Serializer. On
e again, s11nlite abstra
ts a detail away from the
lient: it uses a single Serializerby default, so s11nlite's stream-related fun
tions do not ask for this.Data
an always be
onverted between formats programmati
aly by using the appropriate Serializer
lasses, orby using the s11n
onvert tool (se
tion 21.1).It is not possible, without lots of work on the
lient's side, to use multiple data formats in one data �le - alldata �les must be pro
essable by a single Serializer. Theoreti
ally, it might be easily a
hievable if... no, wewon't go there.22.9 Sharing Serializable data via the system
lipboardExperien
e has shown that holding pointers to obje
ts in the system
lipboard
an be fatal to an appli
ation(at least in Qt: if the obje
t is deleted while the
lipboard is looking at it, the
lipboard
lient
an easily step ona dangling pointer and die die die). One perhaps-not-immediately-obvious use for s11n is for storing serializedobje
ts in the
lipboard as text (e.g. XML). Sin
e nodes
an be serialized to any stream it is trivial to
onvertthem to strings (via std::ostringstream). Likewise, deserialization
an be done from an input string (viastd::istringstream). It is de�nitely not the most e�
ient approa
h to
ut/
opy/paste, but it has workedvery well for us in the QUB proje
t for several years now.Additionally, QUB uses XML for drag/drop
opying so if the drag goes to a di�erent
lient, the
lient will havean XML obje
t to deal with. This allows it, for example, to drop its obje
ts onto a KDE desktop.Assuming you serialize to a
ommon data format (i.e., XML), this approa
h may make your data available toa wide variety of third-party apps via
ommon
opy/paste operations.The sour
e
ode for the s11nbrowser appli
ation
ontains a
lass whi
h a
ts as a global
lipboard for s11n-abledata. 91

22.10 Containers of
onst obje
tsWhen serializing
ontainers of
onst obje
ts, we need to do some spe
ial-
ase handling during deserialization.To make a very short example, let's assume that our
lass
ontains a list whi
h we would like to serialize:typdef std::list<
onst MyType *> ListT;That will serialize just �ne, but deserialization will fail at
ompile-time be
ause the deserialization algorithmof MyType is non-
onst, and thus may not modify the obje
t it needs to modify. It is an inherent property ofDeserializables that they may not be
onst, just as it is an inherent property of Serializables that they must43be
onst.In this
ase we need to apply the layer-of-indire
tion rule. One straightforward approa
h is, in our deserializeoperator, to deserialize the list to a temporary
ontainer of list<MyType*>, then
opy or move the pointersinto your ListT, like so:typedef std::list<MyType *> TempT;TempT tmplist;if(s11n::deserialize(mynode, tmplist)) {...
opy/move tmplist's
ontents to our member list ...}We must of
ourse be
areful with the pointer ownership: tmplist owns the pointers initially, and we will needto move that ownership to wherever is appropriate for our appli
ation.Note that it is theoreti
ally possible to add a simple wrapper whi
h handles this
onst-related handling for a
ertain
lass of
ontainer (e.g. lists or maps), su
h that we
ould do something like:deserialize_list_of_
onsts(mynode, mylist);The fun
tion would need to internally strip out
onstness from ListT::value_type, so it would have sometemplate meta-
ode, but i believe it
ould be done with little e�ort.22.11 Versioning of s11n dataAs dis
ussed (reas as �justi�ed�) at length elsewhere in this do
ument, i'm not a fan of data versioning. Let's
onsider one way it might be implemented, and whi
h is fundamentally similar to how the Boost serializationlibrary a

omplishes versioning (whi
h it in
ludes in its equivalent of s11n_traits):template <typename T>stru
t version_
he
ker {... serialize operator whi
h uses node_traits::set() to embed a version identi�er deserialize operator whi
h uses node_traits::get() to
he
k the version identi�er ...};Now register that type as the proxy for any given Serializable:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�#define S11N_SERIALIZE_FUNCTOR version_
he
ker<MyType>#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>As a �nal bit, we spe
ialize version_
he
ker<MyType> and do any type of validation we like. Viola.There is a
aveat, however: you may have to use
ustom variants of otherwise �standard� s11n proxies/algorithms.e.g., the
ontainer proxies would not like you adding another property to the target node, and may be
omeangry or
onfused (throw or result in
orrupted node
ontent). To work around this, the version
he
ker
oulda
tually restru
ture the serialized data. For example, our serialize operator might embed a new node in thetarget node, storing the version property in the original target and adding the serializable obje
t to a newsubnode:43Well, �should� be
onst. Most serialization libraries do pla
e
onst requirements on serializable types.92

bool operator()(s11nlite::node_type & tgt,
onst SerializableType & sr
)
onst{ typedef s11nlite::node_traits NTR;NTR::set(tgt, �version�, 42 /* need not be an int */);return s11n::serialize_subnode(tgt, �data�, sr
);}Likewise, the deserialize operator would throw if the version identi�er does not mat
h. To avoid dupli
ationof the identi�er in both de/serialize algorithms, the identi�er might be set as a stati

onst member in theversion_
he
ker spe
ialization, or made available via a stati
 getter fun
tion.Sin
e this behaviour e�e
tively only works monomorphi
ally, the normal
all to NTR::
lass_name(tgt,�...�)is unne
essary be
ause it is set by the
ore.The remaining
aveat involves polymorphi
 version
he
king: versioning of types with polymorphi
/virtualde/serialization operators e�e
tively requires those types to do any version
he
king themselves, or expose anAPI whi
h a proxy
an use for doing the
he
ks, as the de/serialize implementations otherwise theoreti
ally
annot get at the version info of any subtype in the hierar
hy.22.12 Splitting up your outputOne of the interesting inherent properties of all Serializables is that they are inherently
omposable. That is,Serializables
an be de/serialized in isolation or within the
ontext of another Serializable. This means thatthere is no parti
ular reason that we have to
lump all of our data into single pa
kets for purposes of savingthem. Let's assume that we have a
lass AType, whi
h
ontains three Serializables, S1, S2, and S3, and thatwe have publi
 a

ess to the data. The following two approa
hes are �just as legal� when it
omes to saving anobje
t of AType to a �le:using namespa
e s11nlite;save(myA, �alldata.s11n�);or: save(myA.s1, �part1.s11n�);save(myA.s2, �part2.s11n�);save(myA.s3, �part3.s11n�);This is parti
ularly suitable when used with the �saving appli
ation state� approa
h demonstrated in se
tion22.2.22.13 Improving
ompile timesThis library's biggest inherent weakness is arguably the
ompilation-time hit it imposes on
lient
ode. Herewe will dis
uss some general guidelines for helping improve
ompile times...First in
lude only the proxies whi
h you know you will need. For example, if you're not serializing doubles,don't in
lude a proxy for doubles. For ea
h Serializable we must
reate a number of ba
k-end types whi
h dothings like API forwarding,
lassloading, et
., using template spe
ializations. Thus the
reation of a proxy isnot trivial for the
ompiler.Se
ondly, try to redu
e your dire
t dependen
ies on s11n.net headers. Some ways you
an do this:
• Create your own front-end interfa
e. With the s11nlite::
lient_api
lass this is very simple to do. Ifyou know you have a very limited set of types to serialize, for example, all of your
lasses sub
lass a baseSerializable
lass, then the native s11n[lite℄ API
an be almost
ompletely hidden from
lient
ode behindthe
lient-side front-end API. By doing so, we
an restri
t the s11n-related
ompile times to more isolatedparts of our
lient sour
e tree.
• If you are in the habit of storing de
larations in MyClass.hpp and implementations in MyClass.
pp, thenre
onsider splitting the implementation �le into two �les, adding MyClass_s11n.
pp (or whatever), andput any parts whi
h
ontain s11n API
alls into that �le. That way, when the main implementation
hanges, we don't need to re
ompile the serialization parts.93

• Pre
ompilation might sound tempting, but has a sign�
ant inherent �aw: any pre
ompiled sour
e unitsmust be
ompiled with the exa
t same options as any
lient
ode whi
h will link to it. If this rule isnot followed then we run the risk of having in
onsistent de�nitions of anything whi
h might have been
onditionally de�ned/implemented based on prepro
essor ma
ros.22.14 Know when you don't need to register a type to serialize itMembers Only. (Most of the time.)This manual goes on and on about proper registering of types with the framework so it
an know how to handlethem. Registrations essentially serve the following purposes:
• Make the
lassloader aware of the
lass: its name and how to
reate an obje
t. This is ne
essary forpolymorphi
 deserialization. Monomorphi

an be done without this.
• Tell the
ore library whi
h de/ser algorithm pair will a
t on behalf of the type. Even in the
ase of typeswhi
h dire
tly implement a Serializable interfa
e, s11n internally uses a proxy to route itself to the proper
lass-level API. (This is for internal uniformity.)As normal in almost all
ultures, non-
itizens have fewer rights than registered
itizens. But they do have somerights. Let's take a look at what they
an do...22.14.1 Containers of Streamable typesThe following
ode will work as expe
ted without any registrations of any of the involved types:typedef std::map<int,std::string> Map;Map m;... populate it ...s11nlite::node_type node;s11n::map::serialize_streamable_map(node, m);Map demap;s11n::map::deserialize_streamable_map(node, demap);The same goes for s11n::list::[de℄serialize_streamable_list().From there we
an use s11nlite::save() to send the node to a �le, or s11nlite::load_node() to load itfrom a �le.The reason this works without registration is be
ause the �streamable� algorithsm don't need, and don't use,any of the main features provided by the registration pro
ess: dynami
 loading and mapping of de/serializationalgorithms.22.14.2 Algos whi
h don't need the s11n
ore APIAs a general rule, if we have a type whi
h
an be de/serialized without using features of the s11n
ore API, andwithout dynami
 loading, we
an get away without registration. We
an do dynami
 loading without the
ore,but that is an important feature of the library, and there is little reason to want to go around it. By �featuresof the
ore,� we basi
ally mean any s11n[lite℄ API whi
h requires a SerializableType template argument. Theshort reason for this is that
alling the
ore library will for
e us to go through registered proxies (or the defaultproxy, whi
h won't work in most
ases).In general, the non-registration
ases normally ex
lude any types whi
h have data nested more than one leveldeep unless we
arefully hand-
raft out de/ser algorithms to avoid the
ore API. While it is normally
ounter-produ
tive to do so, some
ases might
all for doing this.A
on
rete example will help to
larify...�Streamable�
ontainers, as demonstrated above, work be
ause they expli
itely require that all involved typesbe i/ostreamable. This limitation allows the algos to rely on i/ostream operations, rather than the
ore, tode/serialize ea
h obje
t. Non-streamable
ontainers, however, require registrations for their
ontained types.Let's look at why this is so, assuming the exa
t same map type from the previous se
tion:94

s11n::map::serialize_map(node, m);There is a fundamental di�eren
e between serialize_map() and serialize_streamable_map(): the formerhas no idea how to handle the
ontained types, so it sends them ba
k through s11n::serialize(). This, in turn,will attempt to look up the proper handler for the
ontained type, as de�ned in s11n_traits<ContainedType>::serialize_fun
tor.Note that if our map's type is registered as using the default map proxy, this does the same thing as above,eventually routing through serialize_map():s11n::serialize(node, m);23 Mis
ellaneous
aveats, got
has, and some things worth knowing�Don't
ross the streams. That would be bad.�Egon, Ghostbusters23.1 Serializing
lass templatesPlease see the examples on the s11n web site and in the sour
e tree under sr
/
lient/sample/, whi
h
oversthis whole pro
ess in detail. Fundamentally it is not di�erent from handling any other
lass, but there are somespe
ial
onsiderations whi
h have to be a

ounted for when registering them.23.2 Cy
les and graphsWhile i have never seen it happen, it is possible that a
y
li
 de/serializing obje
t will
ause an endless loopin the
ore, whi
h will almost
ertainly lead to mu
h Grief and Agony on someone's part (probably yours!).Su
h a problem is almost
ertainly indi
ative of mis-understood or in
orre
t obje
t ownership in the
lient
ode.Consider: presumably only an obje
t's owner should serialize that obje
t, and
hild obje
ts should generallynever have more that one parent or owner.Data Node-based de/serialization (as opposed to Serializable-based) never inherently in�nitely loops be
auseData Node trees simply don't manage the types of relationships whi
h
an lead to
y
les. In other words, anysu
h endless loops must be
oming from
lient
ode, or possibly from
lient-manipulated Data Node trees.At least one algorithm has been implemented on top of s11n to serializer
ontainers of a graph of
lient-sideobje
ts, but that parti
ular one was proof-of-
on
ept and it
an be implemented mu
h better that i have. Thepoint being, it
an be done, but the library
urrent ships with no algorithms to do this. If you write one, oreven a good, generi
 des
ription of how to implement one, please submit it!23.3 Thread SafetyTo be perfe
tly
orre
t, there are no guarantees. i have no pra
ti
al experien
e
oding in MT environments,and thus it would be a blatant lie if i made any sort of guaranty in this area. But i will tell you what i thinkare the fa
ts...The s11n
ode �should� be �fairly� thread-safe, with some notable
aveats:First o�, no two threads should ever use the same Serializer instan
e at the same time: ea
h instan
e must beused by at most one thread at a time. Violation of that rule is a blanket no-no.The following Serializers are believed to be 100% thread-unsafe (or un-thread-safe, if you prefer) in all regards:
•
ompa
t_serializer (reimplementing this one would be quite trivial, but the last thing i wanna do isreimplement yet another damned parser)
• simplexml_serializer
• expat_serializerThe Serializers parens, funtxt, and funxml have been extensively reworked to use instan
e-spe
i�
 internalparsing bu�ers, as opposed to global data, and are believed to be safe in the sense that you may use N instan
eson N streams from N threads at on
e. (Let me stress: that is theory.)95

The guilty
ode is probably almost all in the �exers, though some of the shared obje
ts (e.g.
lassloaders)
ould
on
eivably be a�e
ted. It is believed that the
lassloader/fa
tory parts, while not spe
i�
ally thread-safe, areunlikely to be a�e
ted by most issues of threadedness. That is, who
ares if two threads do a lookup in the
lassloader at on
e? The only time this might be a problem is when the optional plugin layer is used, be
ausethat layer is akin to dlopen()/dlerror(), and it is possible that the error string from one thread is read byanother.23.4 Polymorphi
 types and template parameters�We've been thinking all these years that Obje
ts and Polymorphism were the solutions to ourproblems!�Anonymous Software DeveloperLet's assume we have the following hierar
hy of Serializables:T1 <== [extended by℄ <== T2 <== T3The s11n registration pro
ess requires that we register T2 and T3 as subtypes of T1. This is (
urrently)ne
essary for proper lookups of the various traited information, like the proper de/serialization algorithms touse on the type.Now
onsider this
lient-side
ode:using namespa
e s11nlite;T1 * t1 = new T1;save(*t1, std::
out); // finedelete t1;t1 = new T3;save(*t1, std::
out); // fineT2 * t2 = new T2;save(*t2, std::
out); // ooops!The problem with that is that save() is going to end up seeing a type of T2, not T1. The end e�e
t is thats11n's
ore looks to s11n_traits<T2> to �nd out the info it needs, and it may very well not �nd it. Even ifit does, our troubles aren't over: the fa
tory layer probably hasn't got a fa
tory<T2> entry, be
ause T2 wasregistered as a T1 subtype and thus exists in the fa
tory<T1>. That means save() would work, but loadingwould not be
ause we
ouldn't instantiate a new T2 obje
t.The solution is to template-qualify the
all to save():save<T1>(*t2, std::
out); // fineIn pra
ti
e, this is more of a problem for deserialize/load operations than serialization.23.5 Absolute No-no's (Worst Pra
ti
es) for s11n[lite℄
lient
ode"A muddle of
on�i
ting opinions united by for
e of propaganda is the worst possible sour
e of
ontrol for a powerful te
hnology."Alan W. Watts, The Book�It's not a problem until you make it a problem.�Seth Ge
ko, From Dusk 'Til DawnThis se
tion, added in version 0.9.17,
overs some �no-no's� for the s11n framework. That is, things whi
h areoften easy to do but should not be done. They are here be
ause, well, be
ause i've done them more than on
eand want to spread the word ;).Please note that the subse
tion titles below all start with the words do not and end with an ex
lamation point!96

23.5.1 Do not
hange the name of a passed-in data node!node_traits<>::name(string) is used to set the name of a node. This name is used by Serializers to, e.g.name XML nodes:<nodename s11n_
lass=�MyClassName�>...</nodename>As a blanket rule:No
ode must ever
hange the name of a node whi
h is passed to it. Code may freely
hange the names of nodes whi
h it
reates.In any
ase, when you do
hange node names, keep in mind that if you want to support the widest variety ofdata fomats, you should follow the standard node naming
onventions
overed in se
tion 5.3.An example of this no-no:bool my_algo(s11nlite::node_type & dest,
onst my_type & sr
){ typedef s11nlite::node_traits NTR;// NONO: NTR::name(dest,�whatever�);// Never
hange the name of a node passed to us.// The following is Perfe
tly A

eptable:s11nlite::node_type *
hild = NTR::
reate();NTR::name(*
hild, �foo�);// alternately://
hild = NTR::
reate(�foo�);NTR::
hildren(dest).push_ba
k(
hild);// or
reate, name, and reparent in one step://
hild = & s11n::
reate_
hild(dest, �foo�);}The reason for not
hanging the name is essentially this: when building up a tree of nodes, the easiest wayto stru
ture nodes (for s11n's purposes) is normally to name them. When a fun
tion names a node duringserialization, the mat
hing deserialization algorithm will rightfully expe
t to be able to �nd the named node(s).When it
annot �nd the named node(s), deserialization will likely fail (this depends on the algorithm and datastru
ture, but generally this would indi
ate a failure). To be perfe
tly
lear: this means that serialization islikely to pass by without error (in fa
t, it's almost guaranteed to), but deserialization will likely fail (again, �itdepends�, but it should fail).23.5.2 Do not use a single Data Node for multiple purposes!See also se
tion 26.2.Never do something like the following:s11nlite::serialize(mynode, mylist);s11nlite::serialize(mynode, myotherlist);We've just serialized two lists into the same data node (mynode). Unless you spe
i�
ally design algorithms/proxiesto handle this, the results are unde�ned. Some algorithms enfor
e that you give them empty
ontainers, somedo not, and the library itself does not spe
ify one behaviour or the other.Likewise, the following is a related no-no:s11nlite::node_traits::set(mynode, �myproperty�, myval);s11nlite::serialize(mynode, myotherlist); 97

Again, we've used mynode for two
omplete di�erent things: storing a property and list
ontents. If the propertyis not hosed by the list serialization algorithm then the extra property in the node may very well
onfuse thedeserialization algorithm! Again: unde�ned behaviour. What we need to do in this
ase is serialize the list intoa subnode:s11nlite::serialize_subnode(mynode, �
hild_name�, myotherlist);Mixing data from di�erent serialized obje
ts into the same nodes will quite possibly
ause a �logi
al failure�during deserialization. That is, the de/serialization will work, in and of itself, but the results will not be whatare semanti
ally expe
ted (but are, indeed, exa
tly what s11n was told to do). It might work, it might not,depending on a bazillion fa
tors. Don't do it and you won't have to worry about any of these fa
tors.That leads us to a related no-no...23.5.3 Do not re-assign a referen
e returned by s11n::
reate_
hild()!Never re-use a referen
e returned from s11n::
reate_
hild() as the target of an assignment to another
reate_
hild()
all. In other words, don't do this:s11nlite::node_type & n = s11n::
reate_
hild(mynode, �subnode�);... serialize something to n Let's re-use n for another subnode ...n = s11n::
reate_
hild(mynode, �othersubnode�); // Doh! Just re-assigned the �subnode� node!That's almost
ertainly not what's intended. What we probably meant to do was:s11nlite::node_type * n = & s11n::
reate_
hild(mynode, �subnode�);... serialize something to n ...n = & s11n::
reate_
hild(mynode, �othersubnode�); // fine(The
hanges are marked in blue.)The design reason that
reate_
hild() returns a referen
e is be
ause it returns a non-
onst whi
h is notowned by the
aller (it belongs to the parent node), and i want the interfa
e to intuitively re�e
t that the
allerdoes not own the returned obje
t. In general C++ pra
ti
e, obje
t ownership is never transfered to the
allerwhen a fun
tion returns a referen
e.Another way to
reate
hildren is like this:std::auto_ptr<s11nlite::node_type> n(s11nlite::node_traits::
reate(�subnode�));if(! (some operation whi
h might fail)) { return 0; }s11nlite::node_traits::
hildren(parentnode).push_ba
k(n.release()); // transfer ownership23.5.4 Do not use Serializers to implement
lassi
al i/ostream operator fun
tionality!It may be temping to implement
lassi
al-style i/ostream operators by using s11n. The
ore of s11n is i/oignorant, and using it dire
tly from within your i/o operators is possible, but potentially tedious. The s11n::ionamespa
e provides
lasses whi
h use s11n's
onventions to provide a streams-based i/o layer. s11nlite providesa binding between the s11n::io layer and the
ore layer. It may be tempting to bypass s11nlite and use thes11n::io layer from your i/o operators. That is unlikely to work, largely be
ause of the work�ow Serializersare designed to follow. Serializers rely on a stri
t sequen
e of events whi
h says, �read/write one top-levelnode from/to this stream, then you're done.� When using Serializers for arbitrary sequen
es of i/o operators,the Serializer
annot pre
isely know when a root node begins, and thus get
onfused. If i/o operations arefreely mixed in arbitrary order (as they easily
ould be when dealing with
lient-side i/ostream operators), theSerializers aren't smart enough to deal with it, as it's far outside of their s
ope.Don't forget: if a type is Streamable (i.e., supports i/ostream operators) then it is inherently Serializable: if itwants to be treated as a full-�edged Serializable, instead of as a POD, a proxy needs to be installed, su
h ass11n::streamable_type_serialization_proxy. See the various pod/XXX.hpp proxy-installation headers forexamples of how this is done. 98

23.5.5 Do not register a type as it's own proxy!Okay, this is not spe
i�
ally a �do not�, but there are good reasons not to do this. Do what? Do this:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�#define S11N_SERIALIZE_FUNCTOR MyType#in
lude <s11n.net/s11n/reg_s11n_traits.hpp>Proxy obje
ts are
reated very often - on ea
h
all to a de/serialize operator - then immediately destroyed.Unless your type is extremely
heap to
reate and
opy, do not register that type as its own proxy. The defaultproxies are
heap by design, and have no per-instan
e state.Aside from that, this type of registration essentially just doesn't make sense, and no use
ase to date has showna need for it. It's really one of those dreaded a
ademi
/theoreti
al problems whi
h is unlikely to ever a
tuallyshow up. But
onsider yourself warned, nonetheless.24 Fun
tional serialization1.1.3 adds some experimental
ode for doing some tri
ks
ommon in fun
tional programming. This is still in itsvery early stages, but i hope to �nd some useful fun
tional/metatemplate tri
ks for adding new features to thelibrary.While the library generally provides all features whi
h �most
lients� need for serialization, there are times whenthat just isn't enough. While writing
ustom algorithms is not di�
ult in and of itself, and normally takes nomore e�ort than a few minutes of time to implement a proxy, it would sometimes be ni
e to have a simple wayto work within the library, but around it's default (or registered/proxied) behaviours. Fun
tional
ompositionallows us to do this by building up fun
tors whi
h themselves en
apsulate one or more serialization operations.24.1 #in
lude ...Most of the
ode is de
lared in:#in
lude <s11n.net/s11n/fun
tional.hpp>24.2 Example: serialize via std::for_ea
h()As an example, let's serialize a map using for_ea
h() and a fun
tor whi
h is applied to ea
h
hild pair of themap. The �more interesting� parts are
olored blue.using namespa
e s11n;typedef std::map<int,std::string> MapT;MapT map;int at = 0;map[at++℄ = "one";map[at++℄ = "two";map[at++℄ = "three";s11nlite::node_type node;Given that, we
an use fun
tors to
all the standard API:ser_f(map)(node);That serializes the map using the default serialize fun
tor (the
ore s11n serialize() fun
tion). Its overloadedtwin takes a fun
tor argument, so you
an spe
ify a
ompatible algorithm (whi
h means just about any s11nserialize algo).As an example, we
an use, e.g., a for_ea
h() loop and spe
ify a fun
tor for ea
h
hild obje
t:99

std::for_ea
h(map.begin(), map.end(),ser_to_subnode_f(// fun
tor generatornode, // target node to pla
e
hildren in"
hild", // name of ea
h
hild elements11n::map::serialize_streamable_pair_f()// ^^^^^ serialize algo, applied to ea
h MAP entry));Now deserialize it using a non-
onventional approa
h:MapT unmap; // target map to deserialize totypedef std::pair< MapT::key_type, MapT::mapped_type > NCPair;// ^^^^ kludge: strip the
onst part of MapT::value_type.firststd::for_ea
h(s11nlite::node_traits::
hildren(node).begin(),s11nlite::node_traits::
hildren(node).end(),deser_to_outiter_f<NCPair>(// fun
tor generatorstd::inserter(unmap, unmap.begin()), // output iterators11n::map::deserialize_streamable_pair_f()// ^^^^^ deserialize algo, applied to ea
h NODE
hild));Weird, eh? The weirder part is: none of this requires any s11n registrations of the involved types. But it alsodoesn't yet work on pointer-quali�ed types, and registration is
urrently ne
essary for that
ase.Blabber: Theoreti
ally, some metatemplate tri
ks
an allow s11n to internally distinguish betweenregistered and non-registered types, whi
h may allow the library to handle stati
ally-known pointer-quali�ed types (e.g., (int*), (std::string*), and (MyType*)) non-polymorphi
ally. In English, thatmeans that means that monomorphs would never stri
tly need to be registered, whereas
urrentlyany non-sta
k-based allo
ation requires registration (long story). That's an unproven theory, though.The main problem with not registering is getting a type's name, whi
h we a
tually ignore in thenon-dynami
-load
ase, anyway.The deser_to_outiter_f() fun
tion returns a fun
tor whi
h sends deserialized obje
ts to an arbitrary outputiterator, so it
an be used on most
ontainers. For
ontainers whi
h support it, this allows deserializing obje
tto a di�erent order than they are saved in, e.g. by using std::front_inserter(). It also allows deserializingfrom one
ontainer type to a fundamentally di�erent type, like map<K,V> to ve
tor<pair<K,V>>. With theproper binders, we
ould deserialize from a map<K,V> to a ve
tor<V>, or potentially even a ve
tor<K> andve
tor<V> in parallel.Trivia: the �_f� naming
onvention was pi
ked up from the Boost.MPL library, and means �fun
tor.�We've also added �_f� variants of all of the major algorithms, like serialize_f, deserialize_f, serialize_subnode_f,et
. These
an (mostly) be used dire
tly as proxies when registering a type, one ea
h for the de/serialize fun
-tors. In the
ase of the subnode-based algos, whi
h take three arguments, you need to use a binder fun
tor,like serialize_to_subnode_f<>, whi
h essentially
onverts serialize_subnode_f to a binary fun
tor (butsee also serialize_to_subnode_unary_f).While s11n has had, sin
e the beginning, the ability to de�ne separate obje
ts as the de/serialize fun
tors,that feature has gone entirely unused until re
ent experimentation began with fun
tional
omposition vis-a-vis serialization. If s11n didn't have this feature, all parti
ipating fun
tors would have to implement bothde/serialize operators (as we have
onventionally done). There are in fa
t
lient-side
ases where
alling ofsu
h fun
tors is ambiguous, whi
h is why the split-fun
tor ability has always been there. Curiously, the
ores11n library never has a problem with su
h ambiguity, and the reason is be
ause it's just forwarding stu� alongand the
ontext has already properly stri
tly de�ned the
onstness of all involved obje
ts. In
lient
ode thisambiguity
annot always be avoided without another layer of indire
tion or
asting. The point being, having asingle fun
tor for ea
h operator turns out to be very useful after all.100

24.3 Composing
ustom algorithms from fun
torsA slight di�erentiation on the above approa
h, we
an
ombine various fun
tors to generate
ustom algrithmson the �y, as shown below. Assuming we have the same types and obje
ts as shown in the previous example:// define a fun
tor to serialize our map:serialize_to_subnode_f<s11n::map::serialize_streamable_map_f>algo("
hild");ser_nullary_f(node, map, algo)(); // Serialize it// Define deserialization algorithm:deserialize_from_subnode_f<s11n::map::deserialize_streamable_map_f>dealgo("
hild");MapT demap;deser_nullary_f(node, demap, dealgo)(); // Deserialize its11nlite::save(demap, std::
out);In th end, demap will have the same
ontents as map.Keep in mind that this is a very trivial example, and work in this area started only in September, 2005. Librarieslike Boost.Spirit.Phoenix do some absolutely in
redible feats of
ompile-time
omposition, and i hope to be ableto eventually understand it all well enough to apply it usefully in s11n's API. Fun
tional
omposition allowsus to de�ne our algorithms as inlined expressions, whi
h has interesting uses. One example is that it allowsus to serialize the same one type using more than one algorithm without multi-registration problems. s11n's
ore only allows one registered proxy for ea
h type, and
omposition allows us a way to bypass the default APImarshaling.24.4 Non-default-
onstru
ted proxiesOne of the more interesting features whi
h algorithm
omposition gives us is the ability to use non-default-
onstru
ted proxies. We
urrently have the limitation that proxies are
opied, not passed by (
onst) referen
e,but this allows at least a minimal amount of at-runtime modi�
ation of our proxies.25 Understanding the
osts of deploying s11n(Why is this se
tion so far down in the manual, when this info really should be up near the top?Be
ause it goes into quite a lot of te
hni
al detail whi
h will only be fully understood on
e the s11nar
hite
ture is understood. It's kind of a
hi
ken-egg s
enario.)Having a generi
, widely-useful serialization framework at hand means, for me, saving tens to hundreds of hoursof work on other proje
t trees. Literally, every time i add s11n support to a proje
t, after 10 minutes of work i
an say, �thank gawd that's over!�But of
ourse all lazy programmers end up paying somewhere... and this se
tion is about the overall deployment
osts of using s11n in
lient-side
ode. While it may not be
onventional for a library to do
ument this type ofthing, i feel
ompelled to tell it like it is, if only to balan
e out with all the hype i've been spouting about thelibrary up until this point ;).By �
osts� we mean things su
h as:
• Developer learning time.
• Code refa
toring e�ort (if appli
able - s11n support
an normally be added to
lient types post fa
to).
• Compilation times. This is de�nitely s11n's sorest point, due to its heavy use of templates. Mu
h workhas gone into
utting these down in the 1.1 tree.
• Runtime resour
es: RAM and �lesystem spa
e. 101

To be
lear, all software has deployment
osts asso
iated with it - this is not a detail whi
h is spe
i�
 to s11n!This se
tion will attempt to address these
osts, to give potential users of the library a good idea of what theymight be getting themselves into... hopefully before they get into it. We will not provide many hard numbers,but we will give an overview of where one
an expe
t to in
ure at least some notable amount of deploymentoverhead.For
ompleteness, we really should
ompare s11n's
osts in at least the following
ontexts:
• The
ost of
ustom-implementing serialization, as opposed to using s11n. It's safe to say that this is nevertrivial when la
king some sort of framework-level support.
• Compared to integrating �the average 3rd-party library�. This of
ourse varies widely, depending on thenature of the lib-
lient dependen
y, so a blanket
omparison
annot be validly made here.
• Compared to the
ost of using an equivalent serialization library.That last
ontext isn't really fair, be
ause there
urrently is only one su
h alternative ;). See http://boost.org,and look for Robert Ramey's serialization library, for the only other C++ serialization framework whi
h
ur-rently o�ers anywhere near the levels of �exibility and features o�ered by s11n. i would guess that Robert'slibrary has similar overall deployment
osts as s11n, perhaps even slightly lower, and of
ourse has the advan-tage of the massive peer-review system that all Boost libraries go through. i've tried to obje
tively
ompare hislibrary and this one in se
tion 28.While normally we won't go into spe
i�
s of s11n vis-a-vis other alternatives, if only be
ause i only use s11n forall of my serialization needs ;), we will attempt to provide an as-obje
tive-as-possible overview of the generaltypes of deployment
osts.As with any software, the
ost of deployment is a
ost paid almost entirely by the
lients of that software (whomay also be the software's developers, as in the
ase of �internal� software). i personally feel that s11n has arelatively low
ost of deployment, parti
ularly when
ompared to the alternative of hand-
oding serializationsupport into a library. That said, i would be extremely interested in hearing your own experien
es and opinions(or hard fa
ts!) about s11n's
ost of deployment. Suggestions for how to lower any aspe
t of deployment
ostsare always wel
omed. :)25.1 Learning
urveIt would not really be fair for me to
omment on this aspe
t of s11n. As its author, i inherently know how s11nworks and how to use it. But i will of
ourse
omment on it, otherwise this se
tion would end immediately afterthis paragraph.It is my belief that experien
ed
oders who start with the sample
ode in the s11n sour
e tree and browsethrough the do
s
an pi
k up the library, almost to the point of full pro�en
y, within a day or two (maybefaster, for you espe
ially
lever ones out there). It
an be understood to the point where one
an basi
ally useit in a
ouple of hours or less, i would think. (If i am way o� here, please let me know!)My �experien
ed guestimate� would say that
oders who have posted to the s11n mailing list normally seem tofeel
omfortable with the ar
hite
ture after writing 2-3 serializable implementations or serialization algorithms.i
an't say how physi
ally long that maps to for beginners - an experien
ed s11ner
an
rank out su
h animplementation in a few minutes in most
ases.Please, please, please, if you are just starting out with s11n, start with the s11nlite API ! See se
tion 2.5 for why.True masterhood of the library
an take time, but how mu
h is unknown and probably unknowable. i will admitthat i do not yet fully
omprehend all of the potential uses, abuses, and tri
ks implied by the ar
hite
ture. There'sstill a lot of room for theory in there, and at least as mu
h room for experimentation. It will be a while befores11n's
urrent model is worn out, i think (i hope!). Exploring those aspe
ts is half of the fun of working ons11n.There is a lot of do
umentation for the library, but that is not be
ause it's hard to use. That is, rather, be
ause:1. As a
lient-side software user, i refuse to use undo
umented libraries, with a strong preferen
e towardswell-do
umented libraries (e.g. Qt (http://www.trollte
h.
om) is a great example, as are the librariesavailable from http://boost.org). Being so pedanti
 on this point, i
annot expe
t users of my softwareto give it a se
ond glan
e if it's not do
umented, and not to give it a third glan
e if simple things likepointer ownership aren't do
umented. You wouldn't believe how mu
h software does not do
ument pointerownership. Aaarrrggg. 102

2. Experien
e shows that do
umenting software helps to �nd weaknesses in the API. e.g. if something isdi�
ult to do
ument
learly, it's almost
ertainly di�
ult to use properly. Holes in the API have oftenbeen
aught by do
umenting the related APIs.3. i enjoy writing about topi
s whi
h interest me, and s11n obviously interests me.Users are not expe
ted to read the full do
umentation in order to be able to use the library, but it is hopedthat the do
umentation will be able to answer most or all of their questions, should they need a referen
e. Ifthe do
s don't su�
e, feel free to email us your questions (the address is at the top of this do
ument).25.2 Intrusivity (or not)�I hate writing apps around te
hnologies like CORBA and Ora
le [database system℄ be
ause theyfor
e the developer to fo
us so mu
h on the spe
i�
s of that te
hnology, instead of on solving theproblem at hand.�Anonymous Software Developers11n goes to great pains in order to be as non-intrusive as pra
ti
al on
lient
ode. Clients wishing to supporta �
onventional� serialization API, where
lasses derive from some Serializable base type, will of
ourse requiresome level of hard dependen
y on s11n. Clients who use s11n's proxy support
an, in many
ases, add serializa-tion without having to
hange their
ore proje
t
ode at all - rather, they simply need to register the appropriateproxies . Using the proxy approa
h
an help keep
lient-side dependen
ies on s11n down to a handful of pla
es,and allows
lients to ship s11n support for their
lasses as an optional
omponent.25.3 Compilation
ostsYes, i a
tually do have something very negative to say about libs11n:
lient-side
ompile times absolutely su
k.This was espe
ially true in versions before the mid-0.9 series, and is still a sore point for 1.0.x. It has been im-proved signi�
antly in 1.1. A simple ben
hmark program is in the 1.1.3+ sour
e tree: sr
/
lient/sample/
ompspeed.
pp,and the sour
e �le in
ludes the results from my PC.The reasons for the horrible
ompilation times boil down to:
• We internally
reate many small template types during
ompilation to a
hieve �
ompile-time polymor-phism� and fa
tory registrations for the s11n API. The former is required for API marshaling, amongstother things, and the latter is required for dynami

reation of obje
ts during deserialization44.
• Compiling template
ode inherently takes more
ompiler horsepower than non-template
ode, espe
iallywhen advan
ed features like partial template spe
ialization are used.
• Compiled template
ode inherently generates mu
h larger obje
t
ode than non-template
ode does. Thismeans longer link times, to resolve multiple
opies of templates. This also means signi�
antly larger obje
t�les, whi
h inherently means more i/o is required by both the
ompiler and linker(s). Whether or not thisspe
i�
 aspe
t plays a signi�
ant build-time role is arguable, and has never been ben
hmarked, but it isat least worth mentioning and
annot be
ompletely ruled out as a problem point.In the 1.0 tree, the main
ulprits for
hewing up
ompile times are the various proxy registrations: it goesoverboard and installs many of them in
ases where it doesn't need to in order to simplify
lient-side usage. Inthe 1.1 tree we have fa
tored out the proxy registrations into as small of units as are pra
ti
al. This requiresa bit more forethought on the developer's part, as he must de
ide whi
h headers/proxies he needs to in
lude,but the
ompile-time bene�ts should be noti
eable in the vast majority of
lient-side
ases. At least, it is hopedthat they will be more tolerable :/.Again, my appologies for the slow
ompiles, but i simply don't see a way around this problem without doingthings like build-time
ode generation, where we
ould build the s11n-related
ode one time in a separate module.Code generators are out of the question, as far the s11n
ore goes, be
ause they is not in-language. That said,
lients are free to do whatever
ode generation they feel they need to. By pre-generating s11n proxies and
ompiling ALL s11n support into lo
alized obje
t �les, is is theoreti
ally possible to shift the
ompile-time hitsto only those modules. Theory, that is,
ompili
ated by the nature of template instantiation rules. If you pullit o�, please share with us how you did it.44That's not entirely true as a blanket rule for deserialization, but it is a rule for s11n's implementation. We
ould dit
h thefa
tory layer if we either had no, or very limited, support for polymorphism. That's not a

eptable, of
ourse.103

The book C++ Template Metaprogramming [CTM2005℄ gives some real-world
omparisons of
ompile-time
osts of deploying template-based
ode. While i do beg to di�er with some of their numbers (whi
h don't showany signi�
ant slowdown until hundreds of types are used, whi
h is mu
h at odds with what i daily see in s11n),it is the only relatively full-�edged analysis i've seen on this aspe
t of template-based
ode.25.4 Memory/RAM
ostsHere we will fo
us on the theoreti
al and abstra
t
osts of system memory (RAM) vis-a-vis serialization via s11n.Filesystem spa
e is not a spe
ial
on
ern in the
ontext of s11n, as �lesystem limits apply to any
ode whi
hsaves data. That said, s11n's i/o layer does no unusual tri
ks, using only the standard i/ostreams interfa
es,so s11n should not exhibit any sort of �unusual� �le a

ess
osts. Likewise, it does no unusual memory-relatedtri
ks like reimplementing new or delete, or using
ustom allo
ators.At an abstra
t level, serializing an obje
t requires that we make a logi
al
opy of the obje
t. This is of
oursenot
heap, even if only be
ause Serializable obje
ts have, by their very nature, some number of data members.In abstra
t terms, let's naively assume that the
opy is twi
e as large as the original. In
on
rete terms, this ishighly unlikely to be the
ase: the serialized data of
ourse has its own internal overhead. To understand whatthis overhead might look like, let's take a look at one possible implementation for an s11n Data Node type,keeping in mind the basi
 requirements pla
ed on su
h types by s11n (se
tion 4.2). A basi
 implementation,not optimized via referen
e
ounting, et
., may very well
ontain the following private data members:
• Two std::strings: one to hold the node's name and one to hold its logi
al
lass name.
• One std::list<NodeType*>, or similar, to hold the
hildren of the node.
• One std::map<string,string>, or similar, to hold the key/value pairs of the node. Remember thats11n internally uses lexi
al
asting for POD-type type
onversion, so internally all properties are storedas strings. While this might sound horrible, this is a simple fa
t of life and also exists in the world ofXML, so i don't feel one bit bad about it. (Besides, most std::string implementations are optimized alot better than most people give them
redit for.)When serializing lots of small obje
ts, this might be huge amount of overhead, relatively speaking. i expli
itelysay �might be� be
ause it really depends on fa
tors like referen
e
ounting, et
., in your STL implementation.As far as i am aware, all STL implementations use su
h features in their std::string
lasses. Sin
e s11n usesstrings extensively for storing raw data, s11n
an indire
tly bene�t from su
h features if your STL providesthem. In any
ase, as the size of the Serializable obje
t goes up, the relative memory overhead of serializingmany of them drops. This is little
onsolation, i understand.In addition to the memory
ost of strings, there is the runtime
ost of lexi
al
asting. For string-typed propertiesa lexi
al
ast is a no-op45, but properties are often not natively stored as strings. e.g. in MyObje
t, we mightstore the
hange_time property as a long int, and de/serializing that property will
ause a short detourthrough an ostream operation (for serialization) or istream op (for deserialization).To be
lear about all of this �massive overhead�, though,
onsider the following
lient-side
all:s11nlite::save(myobje
t, std::
out);Before that fun
tion is
alled, and after it returns, the notorious �se
ond
opy� does not exist in memory: itonly exists for the life of the serialize operation, and it is thrown away like a used tissue before that operationreturns. That is: the
ost is an s11n-internal one, and of no dire
t interest to the user, but the user should beaware that serialization will eat up memory proportional to the size of the obje
ts being de/serialized (whatexa
tly that proportion is, is probably unknowable for all pra
ti
al purposes).Remember, too, that
lient-side obje
ts often also have internal data whi
h is not serialized, so the idea thata serialized
opy is heavier than the original obje
t
ertainly does not apply in all
ases (mainly it applies tosmall types - those with only a few POD data members or one
ontainer).Deserialization normally has similar
osts: we must build up a tree of nodes and populate an obje
t with thedata (
reating the obje
t if needed). Where there might be a big di�eren
e is the spe
i�
 i/o handler: if itbu�ers all of its input before it begins deserialization then the memory
osts jumps, theoreti
ally/abstra
tly byapproximately another fa
tor of roughly 1x. That is, it is potentially possible that a deserialization results ine�e
tively 3x the memory of an obje
t (again, very roughly guestimated). In pra
ti
e this 3x explosion shouldbe extremely rare or non-existant be
ause:45In API terms s11n doesn't know the di�eren
e between string and int and AlaskanPolarBear::MatingInfo, but some internaloptimizing is done to ensure that strings go through as little translation as possible. All that happens, in a worst
ase, is astd::string
opy, whi
h is known to be referen
e-
ounted in most (all?) STL implementations.104

1. All of the shipped serializers do no spe
ial input bu�ering: they read input stream-wise,
reating nodes asthey go, until EOF or they load one
omplete root node. This is �bu�ering� in the sense that we transformthe stream
ontent to s11n nodes before passing it ba
k into the framework for deserialization proper, butwe do not keep the stream
ontent: it is dis
arded dire
tly after
onsumption.2. In deserialization we either have an obje
t to deserialize dire
tly into or we have to
reate one. In either
ase we have the same as with serialization: e�e
tively two
opies of the obje
t's data. The only di�eren
eis that in the dynami
-load
ase we �rst build up the node tree and then the obje
t, whi
h is of
oursethe opposite of serialization.There are
ases, e.g. networking, where bu�ering a whole obje
t tree in a string might be required or mightotherwise greatly simplify other
ode.It would be interesting to explore a �destru
tive� i/o API, in whi
h:
• During serialization, we destroy ea
h node dire
tly after sending it down the i/o pipe.
• During deserialization, we destroy the node dire
tly after we deserialize its
ontents.These operations are not possible with the
urrent API due to the required
onstness of various data. Su
hoperations might also require either new de/ser algorithms or new
onventions to a

omodate, e.g. a post de/serfun
tor whi
h algos are required to
all on ea
h node. In any
ase, at some point during serialization we wouldhave a full se
ond
opy, but only for a fra
tion of the time (while de/serializing the deepest leaves of the obje
ttree, sin
e we must dive in depth-�rst). If i/o support were added dire
tly to a Data Node type and we addsu
h a �destru
tive� API, then it might be possible to
ompletely eliminate all se
ond
opies, at least at theroot level of an obje
t tree (we might need
opies of individual obje
ts). Su
h support, however, is
onsideredproje
t-spe
i�
, and well outside the bounds of the
ore s11n API. That said, the general s11n model might beammendable to su
h an option, perhaps with a little ha
king.25.5 Runtime speed: s11n and the �Big O Notation�It is ar
hite
turally not possible/pra
ti
al/feasible to impose maximum runtime requirements on the s11n API.For example, we
annot impose the blanket rule that all serialization algorithms must perform their duties in(say) linear time. Stream i/o is one of the pla
es where we simply won't be able to get around paying at leastlinear runtime
osts. Client-side algorithms are free to do whatever they like.As a general rule, most de/serialization algorithms inherently have e�e
tively linear
omplexity with some
on-stant overhead, but as they may
all arbitrary de/serialization algorithms in the
ourse of re
ursive serialization,they
an make no guarantees in this regard. One known ex
eption to the �linear guideline� is the Serializerswhi
h do entity translation on their property data (most do this to some degree). The �generi
� entity transla-tion algorithm use by s11n is known to perform slowly. i
an't name an O notation for it, but it's not a prettyone in any
ase. i would be extremely happy if someone would
ontribute a more e�
ient implementation ofs11n::io::strtool::translate_entities() :).i will openly admit to having never
omprehensively ben
hmarked nor pro�led libs11n. i have run some smallspeed tests on my standard 1.4GHz PC, and the numbers were well within what i personally
onsider to bereasonable. For example, an average load-from-stream rate of 20k-50k obje
t nodes per se
ond, depending onthe Serializer, and saving is normally faster. Paul Balomiri, an Austrian s11n user, reports using s11n for some10 million data nodes, 1 gig of XML data, taking 3 minutes to load: this works out to 55k/se
ond, whi
h is
lose to my numbers (but far, far larger than my data sets).In my opinion, the fa
t that Paul
an get 10 million data nodes in memory at on
e without thrashing his systemto death really says something about his STL implementation,
onsidering the theoreti
al memory
ost of ea
hnode (as explained above). i ashamedly admit that i was sho
ked and happily surprised at �nding out that s11nsurvived Paul's data set.i personally use s11n in over half-a-dozen proje
ts, none of whi
h have nearly the data requirements of Paul'sproje
t. i typi
ally save lists and maps, often nested 3 or 4 levels deep, and very rarely more than 10-20k obje
ts(and normally less than a few hundred). Again, i haven't ben
hmarked save/load times, but �to my eyes� s11nappears to be fast enough to suit the vast majority of
lient needs. In any
ase, i
annot say that i have everfelt that the load/save times are �too long� - they seem well with reason to me, from a user's point of view.That said...There are ways to help speed up s11n if you are willing to look into options like using a
ustomized DataNode type or implementing your own Serializer interfa
e (or sub
lass). The
ore library is quite small and105

99.9% template
ode, so it may bene�t from
ompiler optimizations, and �probably� wouldn't dire
tly bene�t
onsiderably from most speed-related tweaking. The internals of a Data Node
ould be implemented moree�
iently if one is familiar with that level of optimization (i'm not, really), and the i/o-related
ode
ould
ertainly bene�t from some optimization as well. Keep in mind that s11n's
ore does not rely on the s11n::io
ode in any way, but that s11nlite does. This means that you
an use the provided
ore and your own i/ointerfa
es if you like. Users who think that su
h i/o or node type
ustomizations might be interesting options toexplore should feel free to get in tou
h with us through the development list and we
an dis
uss some potentialoptions.25.6 Code maintenan
e
osts�Code maintenan
e�, in this
ontext, essentially means, �how mu
h time one must write s11n-related
ode.� Allsoftware has maintenan
e
osts, and these
osts are not always trivial.It is my �rm belief that making s11n any less
ostly, in terms of maintenan
e, would be extremely di�
ult toa
hieve. In the half-dozen or more proje
ts i
urrently use s11n in, the s11n-related
ode is e�e
tively write-and-forget. On
e an obje
t is Serializable, it's always a Serializable, and is usable in all s11n
ontexts using thesame APIs as all other Serializables. Thus on
e that
ode is in pla
e and known to work, it normally be
omesa pure ba
kground detail.With the same major-minor number of s11n, major
onventions will never be
hanged, so there shouldn't besigni�
ant maintainen
e-related
osts in upgrading. Within a development tree, or between, say 1.0 and 1.2,then 1.2 to 1.4, nearly anything might
hange, so upgrading s11n might have porting
osts.Changes as major as an ar
hite
tural overhaul would be denoted by
hanges in the major number. In that
ase,of
ourse, there may be any amount of porting
osts.25.7 MoneyIt would be naive to say that deploying s11n is free of monetary
osts. As the old saying goes, �time is money�,and thus the general rule is:s11n's monetary
ost of deployment is equal to your hourly
ost of software development.That is, every minute of your time it takes you to deploy s11n
osts you (or your
lients, or someone) oneminute of time. Whether or not that time a
tually
osts anyone money or not is not the point - the point isthat deploying anything
osts someone some amount of their own personal time sli
e. (Now if i only had 50
ents for every hour i've spent working on s11n...)The time-is-money equation is of
ourse nothing new, and applies to any software deployed anywhere. Butwe're not here to dis
uss just any software, are we?i personally
onsider s11n to have a lower-than-average deployment
ost than most Open Sour
e libraries.The main reason is tou
hed on in the previous se
tion: most
lient-side
ode is write-and-forget, rather thanwrite-and-maintain. This means, for example, that implementing a serialization algorithm for a given type(or family of types) is a one-time e�ort. The exa
t time it takes to write su
h an algorithm depends on the
omplexity of the problem, of
ourse, but by taking advantage of existing algorithms for
ommonly-understoodstru
tures, like the STL
ontainers, we
an
ut
oding times even further. For example, proxying and saving astd::map<int,std::string> equates to approximately the following
ode:#in
lude <s11n.net/s11n/s11nlite.hpp>#in
lude <s11n.net/s11n/proxy/std/map.hpp>#in
lude <s11n.net/s11n/proxy/pod/int.hpp>#in
lude <s11n.net/s11n/proxy/pod/string.hpp>s11nlite::save(mymap, std::
out)So, the overall money
ost
an be answered with this question: how long does it take you to do those steps?As far as the e�ort it takes to make the average
lass Serializable - i normally need 5-15 minutes to in
ludeall the proper headers, register any proxies i need, write the
ode, and do basi
 tests. Registering proxies forwell-understood types - e.g. the standard
ontainers (again) - is a job of under 2 minutes, even when typedby hand from s
rat
h. Again, on
e these registrations are in pla
e, they are ba
kground details whi
h needn'tworry anyone anymore. Granted, i know the library intri
ately, but from my
lient
ode i behave as
lient
odeshould (that is, exa
tly what do
umentation says to do), and thus in prin
ipal any experien
ed
oder
an
hurnout s11n algorithms qui
kly, and therefor
heaply, on
e they have done it a few times.106

26 Common problems"I preemptively a

ept that from some perspe
tive, these absolutely su
k."Rob DonoghueIn this se
tion i impart some of my hard-earned knowledge with the hope that it saves some grey hairs in otherdevelopers...26.1 Satan speaks through the
onsole during
ompilationIf, during
ompilation, your terminal is �lled with what appear to be endless s
reens of gibberish from themouth of Satan himself, don't pani
: that's the STL's way of telling you it is pissed o�.It may very well be one of these
ommon mistakes (i do them all the time, if it's any
onsolation):
• You're trying to serialize a type whi
h isn't yet registered with s11n. This often happens when serializing
ontainers: remember that the
ontained type(s) must be Serializables, and that a map's value_type (apair type) must also be made Serializable in order to make a map Serializable. This will normally showup as an error saying that no operator()([something℄) is de�ned for the type.
• You've swapped the arguments for a de/serialize()
all. By
onvention, nodes always
ome before Seri-alizables in the parameter list. Swapping these will
ause you no end of error messages from Hell, withthings like, �no su
h list<..>::impl_
lass()...� or �list<..>::
hildren().� The �rst hint that the args areswapped is that it's trying to
all a node_traits fun
tion on your Serializable.
• You've tried to pass a pointer as a node argument. Serializables are a

epted by the
ore serialize()regardless of whether they are passed as pointers or not, but nodes are only passed by referen
e. Why?Be
ause nodes are easy for the API to
ontrol in this regard and Serializables aren't, so Serializables getsome extra leeway (besides, it was trivial to implement the pointer-to-referen
e translation in SAM). Thisproperty internally simpli�es many operations on Serializables, as well.
• You're trying to pass a (Serializable *) to an algo whi
h does not want a pointer, and this is showing upas a failure in the ability to
onvert between (Serializable*) and (Serializable). Double-
he
k your
allsto algorithms other than the
ore serialize() algo. As of 1.1.3, there is also a deserialize() variantwhi
h a

epts a referen
e to a pointer.
• You have jumped from s11nlite to s11n without being aware of the di�erent template args required bylike-named fun
tions in the s11n namespa
e. Shame on you. Almost without ex
eption, the s11nlite::fun
tions with the same name as s11n:: fun
tions are missing one template parameter (the �rst one) - thedata node type - be
ause s11nlite hides that abstra
tion. That said, in many
ases the
alls are identi
al,be
ause template type resolution will do the right thing, in whi
h
ase the s11n/lite fun
tions are basi
allythe same. s11nlite dupli
ates/forwards lots of fun
tions simply to keep a whole usable
lient-side API inthat namespa
e. Be sure to
he
k for di�eren
es before freely swit
hing between the two (see the APIdo
s).
• Const errors during a de/serialize
all: make sure that your Serializable's [proxy's℄ serialization operatorshave the proper
onstness, as de�ned in se
tion 5. In the
ase of a proxy, you may have to split it into twofun
tors: one ea
h for de/serialization, and be sure to add #define S11N_DESERIALIZE_FUNCTOR ... tothe registration
all. This should rarely, if ever, be absolutely ne
essary, however.
• When fet
hing a
hild node during a deserialize operation using, e.g. s11n::find_
hild_by_name(), besure you use a (
onst NodeType *) and not a non-
onst (NodeType *), as the parent obje
t is
onst inthat
ontext.
• When iterating over
ontainers, be sure to use
onst_iterators if the NodeType or SerializableTypepassed to the fun
tion are
onst, as appropriate.To be honest, though, those are just the
ommon ones - any minor violation in usage will
ause the STL to gohaywire, as i'm
ertain you have already experien
ed many times in your
oding life. The important thing isto remain
alm and simply try to understand what the
ompiler is telling you. Often a single STL usage error
an lead to literaly tens of kilobytes of error text (i was on
e punished with 70k for making a one-letter typo),but after eliminating the �rst error the others are likely to go away. Elimination of the problem is normallystraightforward on
e the STL-speak is de
oded. 107

26.2 Containers serialize, but fail to deserializeSee also se
tion 23.5.2.This is almost invariably
aused by a simple logi
 error:(Been there, done that.)When serializing
ontainers, it is essential that ea
h
ontainer is serialized into a separate node. After all, ea
h
ontainer is ONE obje
t, and one node represents one obje
t. It is easy to a

identally serialize, e.g. both alist<int> and map<string,string> into the same node, but the result of doing so is unde�ned. That is, itwill serialize, but deserialization may or may not work (don't
ount on it!).If you've done that, there may be two ways to re
over from it (assuming you need to re
over the data):
• Edit the output �le and split the nodes up manually. The feasibility for hand-editing depends on theSerializer used: some are not hand-editable. Tips: s11n
onvert (se
tion 21.1)
an
onvert it to otherformats and s11nbrowser's
ut/paste features might be useful here (se
tion 21.2).
• Programmati
ally �sh the data out of the node, e.g. using s11n::find_
hildren_by_name() to separatethe various
hildren. In a worst-
ase (all entries have the same name, or names are nondeterministi
)you'll need to do it based on node_traits<>::
lass_name(), but that would be no fun at all, as theyare unpredi
table. (Expe
ting an �AType� node? Think again - you got a �BType�!)Also, it is essential that you use always use
omplementary de/serialization algorithms/proxies. For example,if you use serialize_streamable_map() to save a map, then use ONLY deserialize_streamable_map()to deserialize it, as any other algorithm may stru
ture the serialized data however it likes, as de�ned in itsdo
umentation. Be aware of ea
h algorithm's weaknesses and strengths before settling on it, be
ause
hanginglater may not be feasilbe (old data won't be readable without, e.g. spe
ial-
ase
ode to
he
k for it and use the�old� algorithm - but su
h
ompatibility
he
ks are possible using s11n's proxying model).26.3 Abstra
t Interfa
e Types for Serializabless11n's
lassloader
an handle abstra
t Interfa
e Types: simply add this line before in
luding the registration
ode: #define S11N_ABSTRACT_BASEThat's all. This does not have to be added for sub
lasses of that type.For the
urious: this installs a no-op obje
t fa
tory for the type, as those types
annot be instantiated, andthus
annot be
reated using new(). As far as the
lassloader is
on
erned, trying to instantiate an abstra
ttype simply
auses 0 to be returned.27 Evangelism"If I
an sell ti
kets to Red Sonja and The Last A
tion Hero, I
an sell almost anything."Arnold S
hwarzenegger, while running for governor of California"I want to make sure [a user℄
an't get through ... an online experien
e without hitting a Mi
rosoftad."Steve Ballmer,http://www.
nn.
om/2004/TECH/internet/03/26/sea
h.mi
rosoft.ap/index.htmlObviously, i've got a lot to say about s11n. i mean, how many other Open Sour
e proje
ts of this size have
omplete API do
s, a web site full of example
ode, and a manual of this size ;).So far i've tried to keep the hype down, but it's sometimes di�
ult :). In this se
tion i will let loose andexplain, in no parti
ular order, some of the library's features whi
h i �nd parti
ularly interesting, useful, or justdownright
ool.

108

27.1 Pointer/referen
e transparen
y for Serializables in the
ore APIThat is, the following are equivalent, assuming list is a pointer type:s11n::serialize(mynode, list);s11n::serialize(mynode, *list);One s11n
ontributor, martin kra�t, is always trying to talk me out of this, but the fa
t is, that subtle featureallows some really amazing
ode redu
tion bene�ts elsewhere. For example,
onsider what we would have todo for proxies if they had to expe
t either a pointer or a referen
e to a Serializable? You got it: we'd have todupli
ate every serialization operator for every serialization proxy. No
han
e i'm gonna tolerate that, so thepointer/referen
e transparen
y stays. It is implemented, by the way, via a single template spe
ialization forSAM (a few lines of
ode). The reality is that these few lines of
ode greatly redu
e maintenan
e
osts elsewhere.See the map/list algos, all of whi
h handle pointer and value types with the same
ode, for some examples ofwhat this allows us to do. Or just read on to the next se
tion, where we evangelize just exa
tly this te
hnique...27.2 Container-based algos whi
h are pointer/referen
e-neutralConsider these two data types:typedef list<string> StringList;typedef list<string *> PStringList;i banged by head for quite some time to try to �gure out how to do de/ser those via one algorithm. That's notas straightforward as it sounds be
ause for deserialization we need to dynami
aly load the pointer types, anddo so polymorphi
ally when possible. Type-dependent bran
hing isn't always synta
ti
ally possible in C++, sothe proverbial another layer of indire
tion was needed to solve the problem of �uni�ed
ode� for pointers andreferen
es. Sin
e the CL layer did the dynami
 loading, i wrote up some templates to hide the synta
ti
 andde/allo
ation di�eren
es between pointer and referen
e types, sti
king the CL part behind the pointer-basedbran
h and essentially doing nothing in the referen
e bran
h46.After some e�ort and experimentation, a single pair of remarkably small algorithms evolved, and they now take
are of de/serializing any standard list, ve
tor, and multi/set. That is, the following operations all go throughthe exa
t same few lines of
ode to do their work:StringList * slist = new StringList;PStringList * plist = new PStringList;// ... populate lists...s11nlite::save(slist, std::
out);s11nlite::save(plist, std::
out);s11nlite::save(*slist, std::
out);s11nlite::save(*plist, std::
out);That demonstrates two separate s11n features:
ore API transparen
y for pointers/refs to slist and plist,as
overed above, and algorithm-level pointer/ref transparen
y for the (string) and (string*) elements of thelists. The fun
tion s11n::list::serialize_list()
urrently does all list-based serialization for the framework(that's a LOT). Likewise, s11n::list::deserialize_list() does all of the deserialization. (Reminder, that'sthe default implementation, and it
an be repla
ed for any spe
i�

ontainer type.)Not impressed, eh? Let's look only at lines of implementation vs. fun
tional s
ope:
• serialize_list() is implemented in approximately 11 lines of non-debug
ode.
• deserialize_list() has approximately 20.Consider type L, whi
h is any type
onforming to the most basi
 std::list
onventions (this also
overs ve
tor,deque, set and multiset). Now
onsider the type ST, whi
h may be any Serializable Type, in
luding L. Withthe above algos we may generi
ally de/serializer any
ombination of:46That �nothing� turned into a long-standing bug-in-waiting, reported by Patri
k Lin, whi
h was �xed by adding a one-line�something� in 0.9.17. 109

L<ST>L<ST*>L<L<ST>>L<L<ST*>>L<L<ST*> *>L2<L<L3<L4<ST*>> >ad in�nitum...Get the point?Now
onsider that we
an do the same, using exa
tly two algorithms, for any
ombination of standard map-styletypes (out of the box that's std::map and multimap, but
lient-side map-likes
an also work with these algos).Let's assume M is a map[SK,SV℄, where SK and SV are both Serializable types. Now let's begin to look at thatmore
losely, mixed with the Serializabe list type (L) from the above examples:M<SK,L<SV>>M<SK,SV>M<SK *,SV *>M<L<SV>,L<M<SK*,SV>> >ad in�nitum, ad nauseum...and Amen, brothers! 47By in
luding the proper proxies,
lient
ode gets immediate a

ess to all of the above
ombinations, plus thetrillions more they imply. Clients do pay
ompile- and link-time
osts, plus fatter binaries, to be sure, but theease-of-use and
oder-e�ort bene�ts are, in my opinion, di�
ult to improve upon. Hopefully, future
ompilersor development te
hniques will allow us to
ut the
ompile-side
osts. And if not... we'll just need faster PCs;).Please note that i'm not touting the
leverness of the algorithms themselves, but the �exibility of the s11nar
hite
ture, whi
h allows su
h generi
 algorithms to plug right in.If the dimensions of the possibilities don't seem
ool to you, then s11n probably
an't impress you at all (whi
his all �ne and good, i mean - to ea
h his own opinion). However, sin
e this is the Evangelism
hapter, i'll goahead and say: it is my �rm belief that s11n supports, out of the box, more
ombinations of data types thanmost serialization frameworks
ould ever hope to be able to support at all (and even then only with unrealisti
amounts of
lient-side or support
ode). The main reason for this is that s11n takes blatant advantage of newerC++ features whi
h many mainstream libraries shy away from, often for
ompiler portability reasons. My takeon
ompiler portability is simply this: if we want to save 21st-
entury data types e�e
tively and �exibly, weneed to start using 21st-
entury tools and methodologies. :-P27.3 �Casting� between �similar� typesDue largely to the above-mentioned features of pointer/referen
e transparen
y, s11n allows us to
onvert to andfrom �similar� types with ease (though not ne
essarily with great e�
ien
y). Witness:list<SomeT *> dlist; // SomeT is any Serializableve
tor<SomeT> ive
;// ... populate ive
 ...assert(s11n::s11n_
ast(ive
, dlist));If the assertion su

eeds, dlist
ontains a list or pointers to SomeT,
opied from the obje
ts in ive
. They
ould be int,
har, MyType or whatever - any Serializable will do.A generi
 implementation of s11n_
ast()
an be a
hieved in these few operations:47What would the Evangelism se
tion be without an Amen now and again?110

1. Create a temporary node.2. Serialize the sour
e Serializable into the temp node. On error return false.3. Deserialize the node into the destination Deserializable and return result.The a
tual implementation looks like:template <typename NodeType, typename Type1, typename Type2>bool s11n_
ast(
onst Type1 & t1, Type2 & t2) {NodeType n;return serialize<NodeType,Type1>(n, t1)&& deserialize<NodeType,Type2>(n, t2);}Again, i'm not saying this is a parti
ularly e�
ient way to
onvert obje
ts, but it is extremely generi
. Intheory it will work with any two types whi
h use the same (or
ompatible) de/serialization algorithms. Outof the box, that's already millions of
ombinations, only
ounting STL-standard
ontainers and PODs (thatsaid, many non-STL
ontainers work �awlessly with the STL-intented algos, as long as they follow the generalpublished
onventions).28 Comparing s11n and Boost::serializationThis se
tion tries to give an overview of the major similarities and di�eren
es between s11n and the only otherserialization framework for C++ whi
h
an provide the range of the features s11n does: Dr. Robert Ramey'sBoost serialization library, a member library of the Boost.org proje
t. Below we will spe
i�
ally address pointsand features whi
h appear in either of s11n or Boost, but probably not in other libraries. Though �Boost� reallyrefers to both an organization and the software that organization releases, here we will use the term Boostspe
i�
ally to mean Robert's serialization library, whi
h is part of the main Boost distribution as of version1.3something (summer of 2004, if i re
all
orre
tly).As a software library user, if i didn't have s11n, Robert's library would de�nitely be my
hoi
e for serializationsupport. If you are unde
ided on serialization libraries take a look at the Boost proje
t, whi
h provides notonly serialization, but a huge number of industrial-strength libraries: http://www.boost.orgPlease keep in mind that this
hapter is not an attempt to sway you away from using Boost! On a
oder level,i fully respe
t Robert's implementation and the design de
isions he has made, and am not attempting to showthat either library is signi�
antly all-around better than the other. However, s11n has only one �
ompeting�produ
t, as far as i'm
on
erned, and i thought it might be interesting to
ompare them here. We will assumethat the user is familiar with both s11n and Boost, or at least familiar with some of the main design aspe
tsfrom both.To open the
omparisons on a positive note: Robert and i appear to agree on a great many design de
isions.As his do
s
urrently say about this library:�Its has lots of di�eren
es - and lots in
ommon with this implementation.�A qui
k
omparison of the APIs would suggest that the proje
ts two even
o-developed at some point, thoughthis is not the
ase48.28.1 Cans and
annotsLet's take turns listing a few features one lib has and the other does not,
onsidering only out-of-the-box featureswhi
h
lients
an get to by following the respe
tive library manuals:
• Boost supports serialization of referen
e members in serializable
lasses, at least partially (the supportmight be fuller than the examples suggest). s11n does not dire
tly support this.48Robert, you interested? :) 111

• s11n supports loading without knowing the input format. Boost requires knowing the stream format andusing the appropriate handler type.
• Boost internally tra
ks serialization of pointers and therefor inherently supports serialization of graphs.s11n requires
lient-written proxies to do this.
• Using Boost in
lient
ode e�e
tively requires a hard dependen
y on mu
h of the other Boost library,whereas s11n (as of 1.1) has no 3rd-party dependen
y requirements. Likewise, the boost.org libs providesa whole framework, whereas s11n provides only a serialization layer. (We will not
ount the STL as adependen
y in either
ase be
ause an STL implementation is required by most modern C++
ode.)
• Boost dire
tly supports serializing C-style arrays. s11n's author despises arrays and avoids them likethe plague, but the framework theoreti
ally supports them: use either a for() loop or a for_ea
h()fun
tor. The nature of both libraries' support is very di�erent be
ause of the fundamentally di�erentpointer serialization poli
ies.
• Boost provides several desireable features whi
h s11n does not: std::lo
ale and wide
har/string sup-port, shared_ptr support, and deserialization of
lasses
ontaining referen
es, to name a few.
• Likewise, s11n has a few interesting features whi
h Boost does not: it over
omes some of Boost's
urrentDLL-related limitations, supports transparent �le de/
ompression, and more data handlers (3 formats inBoost vs. s11n's 8).Most of these are relatively small di�eren
es or express
learly di�erent design philosophies or even simply showa fo
us in a parti
ular design dire
tion. The overal range of features in both libraries is more or less
omparable.i believe that both libraries
an be used to implement most, if not almost all, features of the other with somerelatively minor internal
hanges and the appropriate API wrappers.28.2 Compiler and platform portabilityBoost has s11n beat hands-down here. Robert has the major advantages of:
• A lot more experien
e than i with multiple platforms. My only development platform is Linux, witho

asional a

ess to a Solaris ma
hine. In any
ase, my pra
ti
al experien
e is limited to the GNU
ompiler and build tools. (That said, s11n is rigorously restri
ted to ISO-only C++ features.)
• The massive peer review e�ort whi
h Boost.org is so famous for. This should never be underestimated.
• His software is built on top of other high-quality Boost software (e.g. Spirit does the �le parsing), insteado� of hand-rolled support
ode (e.g. the s11n �le handlers are mostly implemented in �ex-based parsers,rather unfortunately).
• One of Boost.org's
ore goals is platform-portable libraries. While i always try to adhere to publishedstandards, and never use platform-spe
i�

onstru
ts (ex
ept, of
ourse, for platform-spe
i�
 operations),i
annot personally test or support even a fra
tion of the platforms out there.If your software already uses Boost, you should strongly
onsider using the Boost serialization library instead ofs11n. i
annot
on�dently say that Boost-using
ode would bene�t enough from s11n to justify the additionalintegration
osts,
onsidering that a good alternative solution is already available in Boost. While i do believethat s11n provides more features than Boost out of the box, i also believe that Boost
ould be made to do most,or even all, of the things s11n does with relatively little work. (i suspe
t that is a side-e�e
t of their STL-ishar
hite
tures.) Even more spe
i�
ally, i think that with the appropriate wrappers, the s11n and boost APIs
ould probably be made to e�e
tively mimi
 one-another, at least where their features allow it, as their modelsare
on
eptually very similar and inherently very adaptable to this level of modi�
ation.28.3 Ar
hives vs Data NodesBoost uses an abstra
t �Ar
hive� data store
on
ept, whi
h is fundamentally similar to s11n's Data Node model.The main di�eren
e is that s11n separates the Node and i/o formats, where the Ar
hive is a
ombination of datanode and i/o marshaler. From a
lient level there would appear to be little di�eren
e in most
ases. s11nliteexpli
itely abstra
ts away s11n's node type and i/o format, but i believe a similar wrapper would be trivial toadd around the Boost
ode. Then again, the Boost API is simple enough that a wrapper like s11nlite is notreally ne
essary. 112

Boost's approa
h is very similar to the model used by s11n's prede
essor, whi
h simply had a set of free fun
tionsfor saving to or loading from the three di�erent formats we had at the time. While it is straightforward andsuitable for many purposes, i fundamentally feel that the only s11n-internal entity whi
h should have to knowabout a stream's format is the
ode whi
h reads and writes that spe
i�
 grammar. Even the user shouldn't haveto know what format he's using (admittedly, this is a purely philosophi
al standpoint, not a s
ienti�
ally-ba
kedone). A
tually, the Ar
hive type does not publish any stream-related APIs, even though they work similarlyto streams. This means that they
an be implemented to be grammar-neutral by simply adding another layerof indire
tion behind the existing Ar
hiver interfa
e or implementing your own Ar
hiver whi
h uses, e.g. adatabase as a ba
k end.s11n internally uses a fa
tory interfa
e for loading all i/o handlers, regardless of whether they are stati
allylinked in with an appli
ation or are truly dynami
ally loaded via DLLs49, and en
ourages users to not give ahoot about what data format they are a
tually using.One perhaps-not-immediately-obvious advantage of s11n's approa
h is that it inherently provides the stati
approa
h as well as dynami
 loading. That is, if you would like to spe
ify a spe
i�
 grammar handler there isnothing stopping you from doing so:MyClass myobj;...s11nlite::node_type dest;s11nlite::serialize(dest, myobj);s11n::io::funxml_serializer ser;ser.serialize(dest, std::
out);And the
onverse for loading. You will need to in
lude the proper serializer header(s), of
ourse. The moregeneri
 approa
h, and one whi
h does not require the headers for ea
h serializer is:std::auto_ptr< s11nlite::serializer_interfa
e >ser(s11nlite::
reate_serializer(�funxml_serializer�));if(! ser.get()){ ... damn ... }ser->serialize(dest, std::
out);While Boost does not
urrently appear to o�er su
h a feature, i believe this is largely be
ause the overall Boostproje
t
urrently la
ks a
ohesive fa
tory API, and this support
ould probably be added to Boost with relativelylittle work.28.4 Non-intrusivityThough our approa
hes are quite di�erent, both libs provide fun
tionally similar non-intrusive (i.e., proxied)serialization support. Robert's approa
h (via overloaded fun
tions templatized on the Ar
hive type) is
ertainlymore portable to older
ompilers than s11n's approa
h (mainly via template spe
ializations). i must admitthat i simply never thought of his approa
h before seeing his
ode, as s11n's model �t so well with templatespe
ializations that fun
tion overloads were simply never
onsidered. In theory they
an be used in
onjun
tionwith s11n's model, and vi
e versa. i
annot
urrently think of any reason why either approa
h would befundamentally more or less powerful than the other, nor do they appear to be mutually ex
lusive in anyway. Fun
tion overloads are
ertainly
on
eptually simpler, and probably mu
h easier for new users to grasp,parti
ularly those who are not well-versed in C++ templates.28.5 Serialization of pointersThis is one of the points where, again, i admittedly stray far from
onventional wisdom. Boost takes a very
orre
t approa
h and has built-in support for tra
king the addresses of serialized pointers, su
h that ea
h isonly serialized on
e and a graph
an be
orre
tly deserialized by the
ore library without user intervention orspe
ial support. Boost also has spe
ial support for boost::shared_ptr<T>, sin
e that is a
ore
omponent ofthe overall boost.org framework.49It is te
hni
ally possible to write a
lassloader whi
h literally
reates the
lasses as needed, but i have never seen this implementedin C++ (the
lass
reation/
ompilation overhead would be extreme, i think). It's been demonstrated in PHP, for example:
reatingdatabase
lasses on-demand by analysing db table stru
tures,
reating
lass
ode to mimi
 them, and eval'ing it.113

s11n di�ers quite radi
ally, taking the �
onvenient� approa
h of simply treating serialized pointers as non-pointers. That is, serializing (T) and (T*) are fun
tionaly identi
ally. During deserialization we rely on C++'sstrong typing support to put us into a
ontext where we
an determine whether we need to deserialize a heap- orsta
k-based obje
t. For example, deserializing data into a list<T*> will
reate T obje
ts on the heap, whereasdeserializing a list<T> will not. This type of di�eren
e is handled transparently by the library. The major
ostfor this is that it (probably)
annot provide built-in pointer tra
king support for doing things like de/serializinggraphs.The separation of the
ore serialization API and i/o API in s11n make this even more di�
ult, as we need adata-format-agnosti
 way of building inter-node pointers, so to say. Again, this is a de
ision whi
h i feel liesway outside of s11n's s
ope. For example, i don't want someone who uses s11n-generated XML in a non-s11nappli
ation to have to
onform to the s11n-imposed
onventions for embedding referen
es to other nodes in theXML tree. Why not use a standard like those emerging from the W3C? Be
ause s11n is data format agnosti
and therefor doesn't know about any grammar standards. See the problem? i refuse to enfor
e for
e su
h arequirement on the base Serializer interfa
e, as i feel it would greatly
ompli
ate their implementations. Havingto write i/o parsers is bad enough as it is, and having to put that mu
h more work into them doesn't sound likemy idea of a fun
oding session.Serialization of graphs and other pointer-related tri
ks
an be and have been done in s11n, but the
ore libraryprovides no spe
ial support for them. Quite the opposite, the
ore goes out of its way to hide the di�eren
es ofpointers and non-pointers!28.6 Data VersioningOne fundamental design de
ision whi
h needed to be made very early on in s11n's development was the issueof how to tra
k versions of data layouts, su
h that we
an tell if we are loading data with a di�erent logi
alversion and abort deserialization if we do.This is another one of those points where i seem to disagree with every respe
table programmer in the world.Strongly disagree, even. My de
ision was, and probably always will be:Data versioning support does not belong in this library's
ore. Period.Of
ourse, it's not fair to make su
h a strong blanket statement like that without ba
king up my
ase. Before ido, a short dis
laimer is in order:Libraries whi
h do not use a key/value pair model for serializing
lass data really do require a built-inversioning system, and a la
k of su
h support in these libraries would indeed be a problem. Theywrite X data members to a stream and expe
t to be able to read X items from the stream, and needsome
ore-a

essible way of providing at least basi
 veri�
ation of that. Fair enough.For referen
e purposes, let's
all Boost's overal i/o approa
h the �X/X� (or �positional data�) model, as it isinherently limited to the physi
al ordering of the serialized items. We
ould also
all it the Ordered model,but �order� also has other impli
ations whi
h may or may not apply here. In any
ase, what distinguishes itfrom s11n, for our purposes, is that X/X requires data versioning to be built in to the
ore serialization library,whereas a key-value-pair (KVP) model does not.My
ase against in
luding this support in the s11n
ore boils down to the following:
• Doing so requires imposing �some sort of versioning
onventions� on all
lients. e.g. use in
rementalnumbers or
onventional software version numbers, like 1.2.3. This would have been an arbitrary designde
ision whi
h s11n's author would have to impose on
lients. The fewer su
h
onventions the libraryimposes, the better.
• Doing so requires s11n to have some idea of what
onstitutes an in
ompatible version, potentially in-
luding support for version number
omparisons to allow operations like �support up to 2 revs ba
k� or�
ompatibility == the same major and minor numbers, irrespe
tive of pat
h level� or other su
h oddness.
• How do we report versioning errors? Using the normal return-false approa
h or a spe
ial approa
h (e.g.version-related ex
eptions)? Again: that would be an arbitrary de
ision whi
h s11n would impose onyou. The ex
eption approa
h doesn't (yet) �t into s11n's
ore
onventions, so it was avoided. (This is
ontinually under re
onsideration.)
• My personal experien
es has shown versioning to be a signi�
ant hinderan
e. This is probably be
ausei
ode, almost ex
lusively, on Open Sour
e proje
ts, whi
h inherently tend to �u
tuate a lot more than
ommer
ial produ
ts do. (Mine do, anyway. ;) 114

• The KVP model, e.g. as used by XML-based appli
ations, appears to be far more version-�exible thanpeople give it
redit for. Data versioning
an be implemented within this model at theoreti
ally any levelof a data tree - from the lowliest integer member to the root-most node of a data tree, and it
an be doneindependently of any data format. There are many di�erent ways to implement this, both intrusive andnon-intrusive, and it would not be fair for s11n to impose any spe
i�
 implementation on you.
• Never in my
oding life (let's
all that 10+ years, if it makes a di�eren
e) have i ever needed data versioningfor proper fun
tion of my appli
ations. If the user feeds us properly stru
tured data, deserializationworks, otherwise it fails. Why make it more
omplex than that? As in XML-based appli
ations, semanti
validation is ne
essarily a
lient-side
hoi
e and versioning falls into the
ategory of semanti
 validation.s11n
on
erns itself with the stru
ture of the data, and
ares very little for the semanti
s of the data (andthen only for
lassloading, be
ause we have to store a unique-per-type identi�er for ea
h C++
lass).
• And �nally...Computers are inherently stupid, and the thought of a pie
e of software telling ME what data i ampermitted to feed MY appli
ation makes me queasy. It makes me downright mad, a
tually. This is OURde
ision to make, not s11n's, and s11n's ar
hite
ture allows us to make su
h determinations at almost anygiven point in the deserializaton pro
ess, should we want to.A qui
k, in
omplete
omparison of the properties of ea
h model reveals the following notable pra
ti
al di�eren
es:
• The X/X approa
h is grammati
ally more
ompa
t, potentially drasti
ally so. For proof of this just
ompare any XML �le to the equivalent in a binary grammar. The addition of
lient-transparent stream
ompressors (e.g. built on top of zlib or bz2lib) makes this point largely moot, at least for pra
ti
alpurposes (though not te
hno-philosophi
ally, be
ause su
h features are not always readily available in allproje
ts).
• The KVP approa
h writes named elements and
an sear
h for them later by name. Thus we
an addproperties, remove them,
he
k under di�erent names for the same property, and other operations relatedto version interoperability. That
apability is not quite missing the X/X approa
h, be
ause we
an mapversion numbers to spe
i�
 deserialization operations, but we don't have the playroom whi
h KVP allowsfor.
• The X/X approa
h would appear to require more maintenan
e than KVP-based
ode when a
lass getsnew members. Robert's X/X implementation is quite sane, but still requires some amount of
are on ourpart if we wants to support older data �les as our obje
ts
hange, if only be
ause (a) ea
h developer hashis own philosophies about version numbers and (b) the version number is de�ned at one sour
e
odepoint and a

ounted for at another point, whi
h makes them easy to get out of syn
, espe
ially in multi-developer proje
ts. In X/X, a failure to
hange a
lass' version number when its serialization algo
hanges(e.g. as data members are added or removed)
an result in unpredi
table, or even unde�ned, runtimebehaviour. (i believe Boost expli
itely throws if it dete
ts this problem, but i am not 100%
ertain of that.RTFM.)
• The X/X approa
h possibly provides easier tra
kability of pointers when doing things like serializinggraphs. Theoreti
ally, though i
an't really ba
k that up at the moment. s11n's �deep pointer
opy�poli
y shifts su
h �spe
ial-
ase� work to the
lient, whereas Robert's
ode handles all of this transparently.
• Data �les
reated for X/X models are inherently unusuable by KVP models, but the other way around isnot the
ase be
ause we
an always dis
ard name info later to
reate X/X data from a KVP data set. Itis interesting to note that Robert's do
umentation shows an example of serializing using a KVP interfa
e,in whi
h the key is internally dis
arded.Whi
h approa
h is better, KVP or X/X? As always, it really depends on what your needs are. i obviously preferthe KVP approa
h, and personally
onsider details like data
ompa
tness to be � issues of the past� (so sue me- i almost always
hoose
onvenien
e over drive spa
e).28.7 API ease of useBoost is probably mu
h simpler to get started with than s11n is. Boost's publi
 API very straightforward, evenalmost intuitive. While s11nlite's publi
 API is just as simple, s11n sets out to spe
i�
ally abstra
t away a
ouple more details than Boost does and has a proportionally (perhaps even disproportionally) higher learning
urve. For example, Boost does not appear to have a publi
 fa
tory/
lassloading layer, so those details never
ome into play. 115

On
e the learning
urve is
limbed, s11n and Boost have approximately the same ease-of-use, i think.Boost also takes advantage of operator overloading to provide a simpli�ed
lient-side API. For example, if A issome Ar
hive obje
t and S is some serializable obje
t, you
an probably guess what the following operationsdo: A < < S;A > > S;Fundamentally, this shouldn't be a problem to add to s11n. Pra
ti
ally, however, s11n's use of the node_traits<>type as an API marshaler for arbitrary node types
ompli
ates the matter, as the operators would really needto be part of that node_traits<> interfa
e. While i haven't tried it out, i do not believe it would add to s11n'sease of use the same way it does in Boost, mainly due to having to
reate a traits obje
t (or some middle-man)to apply the operators to.Additionally, s11n's i/o model would inherently
ompli
ate su
h an addition, as dis
ussed in se
tion 23.5.4.If a user is willing to sti
k with a single
on
rete data node type, su
h operators
ould of
ourse be part of thatAPI. i am not keen on the idea of adding them to the
ore node interfa
e, however, even though in Boost's
asei do
onsider them to be justi�ed.28.8 Serialization TraitsThat s11n and Boost both use traits types to store information about serializable types is pure
oin
iden
e. Weboth use them for tying metadata to types for purposes of managing serialization, but we do
ompletely di�erentthings with them. Boost manages, for example, pointer tra
king,
ustom RTTI [Run-Time Type Information℄,and data version number (a very
lever pla
e to put it, a
tually), whereas s11n mainly uses it for providingtypedefs and (as of 1.1) a

ess to
lass names (whi
h is
on
eptually similar what Robert does with his RTTI).It was by reading the Boost do
umentation that i learned that s11n's proxying and traits approa
hes will onlyproperly work on C++ platforms whi
h fully/properly support partial template spe
ialization. On others itmight not
hoose the proper spe
ialized types. i have no idea what
ompilers might be troublesome here. Notmine, anyway ;). Again, this is a design
hoi
e of s11n: it requires a more modern
ompiler than Robert'slibrary does.28.9 E�
ien
yAgain, Boost has s11n beat hands down on this, on all a

ounts.One of the reasons is that Boost uses parsers written using Boost::Spirit, a true wonder of te
hnology whi
hobsoletes tools like lex for C++ proje
ts and generates
ode whi
h
ompilers
an theoreti
ally optimize downto the last bit. The unfortunate fa
t is that most of s11n's input handlers are written in lex, and this in
ludesa rather large amount of underlying support
ode to help lex
ode �t into the modern C++ world moresatisfa
torily. This is not something i'm proud of.i would love to use Spirit in s11n, and have wanted to for over a year, but i always had problems building iton my boxes, and thus never
ame to depend on it. i hope to in
lude Spirit-powered parsers in s11n someday,be
ause Spirit is just too
ool to overlook: http://spirit.sour
eforge.netTo be
lear, neither Boost nor s11n inherently rely on either Spirit or lex, or any other parser framework forthat matter, but a serialization library without some form of in
luded i/o support is pretty useless for most
ases (but not all
ases50!). This i/o support takes the form of some type of parser, but this is largely animplementation detail and normally need not intrude on
lients at all.Another area where Boost is inherently mu
h faster than s11n is in its one-pass de/serialization model. TheAr
hive type is the i/o marshaler, and all de/serialization operations are performed dire
tly on Ar
hive obje
ts.In s11n we de/serialize obje
ts from/to
ontainers, similar to how we would in an Ar
hive, and it is these
ontainers of �raw� data whi
h are used by the i/o handlers. This is an unfortunate
ost of the physi
alseparation of
ore serialization operations and stream i/o, but one whi
h i believe is highly justi�ed for thislibrary.That said, it is theoreti
ally possible to add internal i/o support to a new Data Node type and use that nodetype with s11n to provide similar fun
tionality as Boost's Ar
hive type. Likewise, it is theoreti
ally possible tosimilarly wrap up Boost's Ar
hive type to use two-phase de/serialization (as if you'd want to). Both ar
hite
turesare very �exible to this type of
hange.50There are a
tually valid uses for serialization without any underlying i/o, like databases, shared-memory (where obje
ts
ouldbe written dire
tly), and other su
h �exoti
�
ases. 116

28.10 The interesting part is...In hindsite (after having written this
hapter, whi
h in
luded reading mu
h of Robert's do
umentation andsome of his sour
e
ode), the following points have be
ome
lear to me:
• Robert and i are indeed, as he on
e said in an email, �kindred souls,� both out just trying to save ourobje
ts.
• On the surfa
e, s11n and Robert's
ode have a few similarities. All
oin
idental.
• At the overall ar
hite
ture level, they have an un
anny number of similarities. Again, all
oin
idental.
• The implementation details are
ompletely di�erent animals.That last point, in parti
ular, strikes me be
ause what's really interesting about it is: they are di�erent animalsfor
ompletely di�erent reasons. That is, the features Robert's
ode and s11n provide are not ne
essarily mutallyex
lusive, but often exist either as di�erent approa
hes to the same end or as solutions to
ompletely di�erentparts of the overall serialization pro
ess. In some
ases ea
h goes into areas the other simply has not explored.A
ouple examples in
lude:
• Robert's Ar
hive and s11n's data node models are not only both there to serve the same end (the
lient'sinterfa
e to and from The Void), but also are both important templatized types for the ar
hite
tures.
• Robert's Serialization traits types tra
k pointers, version numbers, and RTTI info, amongst other things.s11n's traits provide the
lass_name() fun
tion, whi
h logi
ally overlaps somewhat with the RTTI fea-tures, and several fun
tors whi
h play a similar role as fun
tion overloading does in Boost's
ode (and itdoes so in a mutually
ompatible way, it turns out).The main impli
ation of this would seem to be that it might be
ompletely worthwhile to look at either mergingin features from ea
h other's library or to work out some way to merge them. A simple disappearan
e of oneof the libs would not be a

eptable by either of us, i'm
ertain, and i do feel that both distinguish themselvesenough that they
annot simply merge one-to-one. It would be interesting to �gure out how the
ore di�eren
esof, e.g. versioning and deep vs. shallow pointer
opying,
ould be abstra
ted into poli
ies or other C++te
hniques, su
h that we
ould present a single
ore and build our own features on top of it. After having readmu
h of Robert's do
umentation, i have little reason to think that this is not possible. The di�
ult part, ithink, is �guring out where the line between
ore and
lient-side poli
ies should
ome in. Something to thinkabout, anyway...28.11 In
losing: s11n.net and Boost.orgTo be
lear, no s11n.net software has any asso
iation whatsoever with Boost.org's software, and we won't defamethem by
laiming any su
h asso
iation.From here on we swit
h from �Boost� meaning �Robert Ramey's Boost serialization library� to Boost meaningthe Boost.org libraries in general.Several people have written me to ask if i plan on submitting s11n to Boost.org for
onsideration as a memberlibrary.i'm truly �attered by this question, but i have no plans on submitting s11n to Boost.org. The reasons are:(Please a

ept my appologies in advan
e if any of the reasons below seem presumtuous, pompous or evendownright stupid. Everyone's got their own quirks, and a several of mine are expressed below.)
• They are Gods, i am not51. They would eat me alive and
all it a Virgin Sa
ri�
e Breakfast. i am along-time hobby programmer who's hobby serendipitously turned into not only his profession but alsohis lifestyle. A virtual hippie, so to say. By
omparison, many of the Boost members are well-trained,seasoned veterans of far more design
ommittees and software wars than i.
• i believe the Boost team would (quite rightfully) try to enfor
e a stri
t set of ex
eption
onventions onthe library. As dis
ussed in se
tion 4.6 of this manual, i
urrently have reservations against doing so. idon't want to be fa
ed with that reality quite yet. The day will likely eventually
ome, but only after ifeel
omfortable with all of the design de
isions and their impli
ations.51�Ray, the next time somebody asks you if you're a god, say YES !� � Ghostbusters117

• i would likely be required to expli
itely support, or help to support, a wide variety of C++ platforms whi
hi will never in my life lay �ngers on. i
ould not, in good
ons
ien
e, possibly
laim to support platformswhos names i know only from #defines in
onfig.hpp52. Likewise, i despise spending a signi�
antamount of my
oding time resear
hing workarounds for de�
ient platforms, even if i do have a

ess tothose platforms. i love software development, and i want it to
ontinue being play-time instead of turninginto work-time.
• My freedom to experiment in the main sour
e tree would be more limited, as stabler interfa
es would bethat mu
h more important. Either that, or i would end up maintaining two di�erent
opies. That wouldnot only be a real drag, but would also send the wrong message to users by providing two potentiallyin
ompatible APIs.
• While there are some
ompelling di�eren
es between s11n and Robert's implementation, our librariesare un
annily similar in both nature and design. i believe that in bending s11n more towards Boost wewould end up at roughly the same implementation, or at least very similar features wrapped up in verysimilar interfa
es. Neither Boost.org nor its users would bene�t from an overlap of that size, even if �some
ompetition within Boost might be a good thing� (as one writer suggested). Boost is a
ohesive whole,and non-dupli
ation of features helps keep it that way.
• We
ould probably never get a group
on
ensus agreeing to keep s11n's deep-pointer-
opy poli
y (morelikely, i would be outvoted 400 to 1). Nor would we ever �nd a 100% all-around-agreeable fa
tory interfa
e,in
luding the underlying
onventions. Nor would most e�
ien
y-seekers even look twi
e at s11n's heavyuse of lexi
al
asting, would demand internal native type support via, e.g. boost::Any, would requirestri
t performan
e de�nitions, et
. Fair enough, but that simply isn't my thing.By and large, i'm worried about Death by Committee even more than the death by Virgin Sa
ri�
e Breakfast,though i'm not sure who would die �rst, s11n or my desire to
ontinue
oding on it.To be absolutely
lear: both this library and i would
ertainly both bene�t greatly from the Boost
ode reviewpro
ess53! Well, the one of us who didn't die �rst would, anyway ;). i want to save my obje
ts now, and s11ndoes that now... and does so without killing anyone54 :).It is possible, but i don't quite dare say �likely�, that i will at some point fork o� a
opy of s11n whi
h is basedo� of the
ore Boost libraries, targeted spe
i�
ally at Boost-using
lient
ode. This primarily depends on theavailability of Boost on
lient ma
hines (traditionally it is not preinstalled on most systems).One of s11n's long-standing design de
isions has been to redu
e 3rd-party library dependen
ies to a minimum.Thus i spent 2+ years writing utility
ode whi
h already exists in libraries like Boost :/. If we were to repla
e allof s11n's �utility
ode� with Boost equivalents, we
ould probably
ut the size of the tree by 1/2, not
ountingthe i/o parts (that makes up the majority of s11n's
ode). And i
ould �nally get rid of that damned stringutility library whi
h keeps hopping from sour
e tree to sour
e tree like a little virus.Assuming even a modest 20%
ode redu
tion, that would equate to 20% less
ode to maintain, whi
h is alwaysa good thing. Of
ourse, it also means relying on gawd-only-knows-how-many underlying libraries in Boost, theinterfa
es and behaviours of whi
h we
an only hope are stable from one version to the next. (To be
lear, ihave no experien
e with Boost version
ompatibility, so i am not badmouthing them here!)Not to be underestimated: some of the Boost
ode will theoreti
ally be
ome part the �next� C++ standardlibrary and it would pay notable maintenan
e dividends to base s11n o� of these libraries as mu
h as possible.i feel
ompelled to make a �nal
onfession, as well, and explain the reason why s11n is not already built o� ofthe Boost libraries. This has been asked more than on
e, and the question is a fair one.i have some deeply-seated, admitedly somewhat e

entri
, philosophi
al problems with the Boost distributionpoli
ies. Not their li
en
e, but the way their
ode is distributed.In short, my message to the Boost team is this:If the
ode was easy to install, i would have been using Boost sin
e years. Please provide some form of
onventional build pro
ess (one that doesn't for
e me to download the build tools!). Whether or notthey are Autotools, i don't
are: a simple
on�gure s
ript and/or Make�le would do. Justi�
ation:as a library
oder, if i do not believe that Library ABC will be on my target
lient systems, i generallywill not introdu
e a dependen
y on Library ABC in my libraries. i'm pedanti
 about that, to thepoint of even skipping over jewels like Boost if their value isn't relatively
onvenient to
ash in on.52i'll save the Tirade on the Illusions of Portability as Per
eived by Most Autotools Users for another time.53TODO: see if there's a Boost-supported pro
ess to submit
ode for review with the expli
it idea that it is not targeted atin
lusion for Boost. i suspe
t not, given the ne
essary overhead, but it would indeed be very interesting. A �Boost of Breed� stampof approval type of thing.54If this does happen to you, please �le a bug report. 118

And get rid of the
onfig.hpp �feature� of #error ing on the unknown
ompiler version every timei upgrade my g

!!!!! ARGH!!!!i admittedly get overly-annoyed when it
omes to points like these, but if you guys will �x thesethings then i'm your newest
onvert for life. The wonderful
ode - and even
omplete do
umentation- is all there. Pra
ti
ally a C++ Nirvana right before our drooling mouths, but it is nonetheless notas a

essible as it should be.Potential Boost users: please pay no attention whatsoever to this man's ramblings - give Boost a try and youwill probably be amazed by its quality and range of features.29 Sour
e tree innardsThis se
tion
ontain information about some of the implementation details of s11n, and is only of potentialinterest to those working dire
tly with the s11n sour
es. It may be of parti
ular interest to anyone attemptingto port the tree to another platform.29.1 Build tree stru
tureThe build tree is stru
tured in a fairly straightforward, mostly
onventional manner. It looks more or less likethis: to
/ = the
omplete build tools (to
 means= �the other
on�gure�).do
/ = the do
s (this �le), plus possibly some Doxygen stu�.in
lude/ = empty (just one Make�le). The headers get symlinked here during the build pro
ess.sr
/ = the sour
e
ode, of
ourse, made up o� the following trees (listed in build/dependen
iesorder):plugin/ = the plugins sublib. Note that it
omes before s11n in the dependen
y
hain.s11n/ = the
ore library, in
luding the
lassloader/fa
tory API.io/ =
ore i/o
ode, several subdire
tories (one for ea
h spe
i�
 Serializer
lass), andshared utility
ode for the Serializer build pro
ess (e.g.,
reating the lexers).lite/ = s11nlite and friends.
lient/ =
lient-side
ode.s11n
onvert/ = utility to
onvert between any two Serializers' formats.sample/ =
lient-side demo/sample/test
ode.The sr
 dire
tory is broken down the way it is mainly to enfor
e spe
i�
 dependen
ies between
ertain partsof the framework. For example, the
ore should never know about the i/o layer, and is thus built before the i/oparts (before the i/o headers are in pla
e), to enfor
e this dependen
y. If someone a

identally adds #in
lude<s11n.net/s11n/io/...> to a sour
e �le under sr
/s11n, the next full build would fail to
ompile (unless per
han
e the
ompiler pi
ks up an installed
opy of the header from, e.g., the build's $prefix path).29.2 Header �le weirdnessAll header �les are stored in the same dire
tory as their sour
e �le (if any, otherwise the same dire
toryas their sublibrary), but they are always referen
ed in other �les using the fully-quali�ed form: #in
lude<s11n.net/s11n/...>. This works be
ause the headers are symlinked into pla
e (under in
lude/s11n.net/...)during the build pro
ess. This serves the following purposes:
• Enfor
es that we
annot build library A before library B if lib A depends on B, be
ause B's headers will notbe in pla
e (and therefor, presumably A will not
ompile). This enfor
ement only works on initial/
leanbuilds, by the way.
• Establishes the same #in
lude
onvention that
lient
ode should use when in
luding the proje
t headers.
• It gives maintainers more �exibility and simpli�es porting the tree to other platforms, as we
an move thesour
es and headers around without breaking any #in
ludes.119

• While the sour
e tree might
ontain �extra� headers, a
oder
an know whi
h ones are �o�
ial� by lookingin the in
lude tree (whi
h
ontains only headers whi
h would get installed).While this might seem odd, i've been using this approa
h sin
e last millennium and it has always served mewell.We
ould just as well store the physi
al headers under in
lude/..., but in my experien
e this makes editing the
ode more tedious. i prefer to have the headers and implementations in the same dire
tory, and the symlinkingprovides that �extra layer of indire
tion� so that both approa
hes are a

omodated simultaneously.i've worked on several proje
ts whi
h split the sour
es and headers, and almost always �nd that
oders inad-vertently in
lude headers from modules whi
h
ome after their own in the dependen
ies
hain. While this doesnot unduly upset most people, it does unduly upset me (i'm a huge fan of proper dependen
ies). There is nosimple, straightforward way to �nd this type of problem in su
h a tree, so i prefer to make in impossible for a
oder to do, via the symlink approa
h.29.3 Generated �lesThe build tree in
ludes the following generated �les, whi
h are normally
reated during the
on�gure pro
ess.For porting purposes, they
an be hand-
reated or taken from a system with a generated
opy and tweaked tosuit.
• sr
/s11n/s11n_
onfig.hpp: this is the library's main
on�guration header, de�ning what features aresupported, shared paths, et
. It is generated from the �le s11n_
onfig.hpp.at.
• sr
/plugin/plugin_
onfig.hpp: this header is only needed on platforms where s11n_
onfig.hpp:s11n_CONFIG_ENABLE_PLUGINSis set to a true value. It de�nes the plugin layer's options, su
h as the default plugins sear
h path, and isgenerated from the �le plugin_
onfig.hpp.at.
• Various �ex-generated lexers, sr
/io/*/*.flex. The tree ships with pre-�exed versions, however. Infa
t, the �ex-generated versions won't even
ompile as-is under newer C++
ompilers due to stri
terC++ standards
omplian
e in modern tools. The generated
opies are ha
ked a bit during the buildpro
ess using Perl, but this is only known to work for lexers generated by �ex 2.5.4. While newer �exversions exist, Linux distributions ship with 2.5.4 sin
e years be
ause it at least generates
ompilable C
ode (whereas newer ones often fail to do even that).29.4 PluginsPlatforms whi
h meet the following requirements
an potentially work with s11n's plugins model:
• Must have the equivalent of dlopen(). That is, a fun
tion (probably with a C API) whi
h
an open aDLL and link it into the running pro
ess.
• It must be able to export symbols in a DLL into the appli
ation. On GNU platforms this is done using the-rdynami
 (or -export-dynami
) �ag, and needs no spe
ial
ode support. On Windows platforms, all�appropriate�
lasses must be expli
itely exported. This is a real bummer, and i
annot personally tell youwhi
h
lasses need it and whi
h do not (be
ause my platform doesn't need this). The �le s11n/export.hppde�nes the S11N_EXPORT_API ma
ro, whi
h is intended to be pla
ed in the de
laration for
lasses whi
hneed to be exported.
• When using Mi
rosoft(tm)
ompilers (and maybe others), all DLLs built for this framework must be linkedwith the �keep unreferen
ed data� option. This is essential for fa
tory registration to work. If this optionis not used, the build will work but no fa
tory registrations will happen - the end e�e
t is that we
annotload new types via the fa
tory API.If your platform supports any of the following DLL loaders, the provided plugin implementations should beokay for use as-is on your system:
• dlopen() - the de fa
to Unix standard.
• lt_dlopen() - a GNU variant of dlopen(), ported to many platforms. This variant is
hosen by the
on�gure s
ript if it is found, taking pre
eden
e over dlopen().
• LoadModule() - the Win32 equivalent of dlopen().For supporting other loaders, see the �le sr
/plugin/plugin.
pp for how the platform-dependent
ode ishandled. 120

30 In Hindsight...�Don't you look at me that way!�Mom�Hindsight is always 20/20.�Common proverbThis se
tion is mainly a pla
e for me to blab about spe
i�
 elements of the library that i would like to
hange,see
hanged, or �would/should have done di�erently.� This is not a bug list, but might partially be
onsideredan RFE (Request For Enhan
ements).30.1 The name �Data Node�This was a huge mistake. When the templatized Node
on
ept entered the API, i already had a type nameds11n_node (but not the same one we have today), and didn't want to use the
on
ept name S11nNode be
ausei didn't want to give the impression thats s11n_node and S11nNode were the same thing. Let's
halk up onepoint for Laziness. In hindsight, i should have thought more about it and
hosen a
ompletely di�erent name,like SerializationNode (SNode, for short). Ashamedly, that name never hit me until just now.The phrase �data node� is simply too vague, and often ambiguous (e.g., in the
ontext of serializing a graph,where �node� is the
onventional term for ea
h graph element).In the future i may well start to repla
e the term. The fa
t is, however, that this do
ument, the API do
s, andthe web site, are all �lled with the phrase �data node�. The e�ort needed to
ompletely update the do
s wouldbe tremendous. i have reservations about �slowly� swit
hing terms, though, be
ause i don't want the di�erentterms to
onfuse users.30.2 Patterns, formality, et
.i think it's understandable that i never had any
lue that this proje
t would grow to the size it has. It startedout life ba
k in 2001 as a set of utility
ode whi
h i knew i would need in order to implement serialization.The library itself, as a formal entity, has evolved steadily, often rapidly, sin
e late 2003. Unfortunately, i havealways been so fo
used on playing with the
ode that i have negle
ted some formalities whi
h would not onlymake users' lives easier, but would also help to improve the library. While i have been quite diligent aboutdo
umentation, i haven't, until re
ently, begun to think of the library in terms of Patterns (see se
tion 4.7).This is probably a side-e�e
t of me being so buried in the implementation that i simply haven't stood ba
k longenough to see the various Patterns. i hope to be able to do
ument these more fully in the future, and perhapseven adjust some �non-Patterned� parts of the ar
hite
ture where it seems that a parti
ular Pattern would workwell.The authors of the book C++ Template Metaprogramming [CTM2005℄, David Abrahams and Aleksey Gurtovoy,
laim that types like s11n_traits<>, whi
h they des
ribe as �blobs�, are a
tualy �anti-patterns�, meaning �don'tdo that!� i feel that their position is well-justi�ed within the
ontext of their Metatemplate Programming Library(MPL) work, but not in the general
ase. The �blob� pattern does have its drawba
ks, but also �lls numerousroles very ni
ely.30.3 Ex
eptionsAs do
umented elsewhere in this manual, the ex
eptions support in versions prior to 1.1.3 was
ompletelybroken. To be fair, it wasn't designed to deal with ex
eptions until 1.1.0, and even then the handling
odewas far from adequate. The la
k of strong ex
eption guarantees was not a re�e
tion of my ignoran
e of whatex
eptions are, but of my un
ertainty about how to best to a

omodate for them in C++. My pre
on
eptionsof ex
eptions stem from my Java years, but i am fully aware that ex
eptions in Java and C++ are di�erentbeasts, and fully aware that i don't know what all of those di�eren
e are. Knowing that there were lots ofpitfalls to ex
eption handling, i
autiously avoided the topi
 for some time. This is rapidly being remedied inthe 1.1.3+ releases.The ex
eptions support would have been done a lot earlier if i had not delayed implementing the s11n::
leanup_serializable()me
hanism. The prototype for that was developed almost a full year before i in
luded it in s11n. i was initiallyafraid that the additional overhead would add to the already-hurting
lient-side
ompile times. This fear turnsout to have been unjusti�ed - the impa
t is measurable but small. On one qui
k test it appeared to add about1/3rd of a se
ond to
ompile times per input �le, though this number is a
tually dependent on the number121

of registered Serializable types. The bene�t of that me
hanism is immeasurable though, as it empowers manysafety guarantees this library
ould not otherwise make. i personally don't mind paying 1/3rd of a se
ond forthe guaranty of no leak if an ex
eption is thrown.30.4 Build tree and
ode layout
onsisten
yi know it's annoying that every 3rd release i move header �les around. The fa
t is, i'm a habitual tinkerer. As iuse the library in more
lient
ode, i
hange the library to be more a

omodating, or just
learer or simpler touse.This isn't likely to
hange.Sin
e the 1.0 release, the proje
t o�
ially has �stable� and �development� sour
e trees, so i no longer feel guiltyabout this. Having the dev tree around keeps me from mu
king up the stable interfa
es, as i undoubtedly wouldif i didn't have a se
ond bran
h of the sour
e tree to freely experiment with.31 Is this the end?"How far y'all going, she asked with a sigh. We're goin' all the way. Til the wheels fall o� andburn."Bob Dylan, Brownsville GirlWe are nearing the end of the do
ument, but hopefully the new possibilities for saving your data have justbegun. :)If you are looking for more information about using s11n, try:
• The s11n sour
e tree has
ode for a
ouple
lient-side apps, whi
h will
ertainly prove informative to thosestarting out with s11n: see sr
/
lient/sample
• The web site is updated fairly often, and you just might �nd something interesting over on there if you
he
k ba
k on
e in a while:http://s11n.net
• If you have questions,
on
erns, or just want to say �Hello, world�, please email us:s11n-devel�lists.sour
eforge.net.....Before i go, i want to tell you brie�y why i use s11n in all of my
ode: be
ause it's just so damned easy todo. When there are su
h time- and feature-gains to be had via su
h a simple-to-integrate tool, it's hard tojustify re-implementing any save/load
ode55. This
ontinual intera
tion with multiple
lients also greatly helpsin �guring out exa
tly what s11n needs to do and what servi
es it must provide, so the library
ontinuallyreshapes and improves under the well-proven and very-very-very long-standing rules of Natural Sele
tion, alsoknown as Darwinisti
 Pro
esses or, in the marketing department, Upgrades.As always:
• The sour
e tree is always the most-de�nitive sour
e of information, but the web site is also updated fairlyoften as new advan
es are made, often a bit in advan
e of up
oming
hanges.
• i am always open to getting mails with questions about s11n, so don't hesitate to email our developmentlist. i will ask that you please browse the manual �rst, but i
ertainly do not expe
t you to s
our everyweb page or
ode �le before posing a question. i understand that the do
umentation has some gapingholes in it, and i will be happy to �ll those holes by answering your questions.
• The main goal of s11n is to Save Our Data! If s11n
an't do that, please help us out by suggesting howwe might be able to
hange it so that it
an save your data! Sometimes just saying �s11n
an't do [this℄�is enough to spur a solution, as often the author does not realize something is a problem or omission untilsomeone else points it out (thanks again to Ton and Gary, espe
ially, for that).On
e again: thanks a lot for taking the time to
onsider adding s11n to your toolkit! And thanks a whole lotfor Reading The Full Manual. :)55You
an bet your ema
s that i'm pretty si
k of that part by now ;).122

�� stephan�s11n.netor, of
ourse:s5n�s11n.net:)Happy ha
king!!!

123

Indexabstra
t Serializable types, 108algorithm, de�nition, 24algorithms,
ommonly used, 58algorithms, serialization, 56ar
hite
ture, overview of, 24Base Types, 23, 53Base Types, abstra
t, 108bool, as return type, 28bool, justifying, 28brute for
e deserialization, 46bz2lib, 90
asting Serializables, 44
aveats, 14, 95
lass_name(), 67
lassloader, de�nition of, 23
lassloader, role in s11n, 25
loning Serializables, 90
ommon problems, 107
redits, 9
y
les, 95Data Node, de�nition of, 21Data Node, setting
lass name, 31Data Nodes,
lass names of, 30Data Nodes, property key requirements, 27deserialization, brute for
e, 46deserialization, pro
ess, 26deserialize, de�nition of, 22deserializing obje
ts, 45Dis
laimers, 7elem_t (sample Serializable), 50elem_t_s11n (sample proxy), 50features, primary, 12feedba
k, providing, 8�le extensions, 60formats, data, 59fun
tor, de�nition, 24fun
tors, serialization, 56graphs, 95impl_
lass(), 67indentation, Serializers and, 60Interfa
e, Default Serializable, 22interfa
es,
ooperating with remote, 32interfa
es,
ustom Serializable, 38Li
ense, 7magi

ookies, 61Node Traits, 22node_traits, 22node_traits<>, 33nodes, �nding
hildren, 43

ODR, 24One De�nition Rule, 24operator, deserialize, 22, 30, 48operator, serialize, 22, 30, 48Patterns, 29, 121problems,
ommon, 107properties, error
he
king, 43properties, getting, 42properties, setting, 42proxies, 39, 56proxies,
ommonly used, 58proxies, spe
ifying fun
tors, 39proxy, list_serializer_proxy, 57proxy, map_serializer_proxy, 58proxy, pair_serializer_proxy, 58proxy, streamable_type_serialization_proxy, 57proxy, value_map_serializer_proxy, 58registration,
lass names, 54registration,
ustom Serializable interfa
es, 54registration, default interfa
e, 54registration, proxies, 55registration, where to do it, 56s11n, meanings of, 21s11n_
ast, 89s11n_
ast(), 44S11N_DESERIALIZE_FUNCTOR, 40S11N_SERIALIZE_FUNCTOR, 40s11n_traits, 22s11n_traits<>, 34S11N_TYPE, 40S11N_TYPE_NAME, 40s11n
onvert, 86s11nlite, 15s11nlite, role in s11n, 25SAM, 23, 73SAM, overview, 25Serializable interfa
e,
onventions, 29Serializable Traits, 22Serializable type,
reating, 38, 47Serializable, de�nition of, 22serializable, de�nition of, 22Serializables, abstra
t, 108Serializables,
asting, 44Serializables,
reating, 37Serializables, working with, 42Serialization API Marshaling, 73serialization operators, templates as, 33serialization, pro
ess, 26serialize, de�nition of, 22Serializer,
ompa
t, 62Serializer, de�nition of, 22Serializer, expatxml, 62Serializer, funtxt, 63Serializer, funxml, 63Serializer, parens, 64124

Serializer, simplexml, 64Serializers, 59Serializers,
onventions, 60Serializers, in s11nlite, 66Serializers, role in s11n, 25serializing obje
ts, 45serializing Streamable Types, 44state, saving appli
ation-wide, 87Streamable Types, 43Streamable Types, de�nition of, 23Streamable Types, serializing, 44Streamables, 43Style Points, 24Superma
ros, 52terms and de�nitions, 21thread safety, 95Traits, Serializable, 22type traits, 33walkthrough,
reating a Serializable, 47zlib, 90

125

Referen
esReferen
es[CTM2005℄ C++ Template Metaprogramming, by David Abrahams and Aleksey Gurtovoy.[CCS2005℄ C++ Coding Standards, by Herb Sutter and Andrei Alexandres
u.[C++StandardLib℄ The C++ Standard Library (A Tutorial and Referen
e), by Ni
olai Josuttis. Without adoubt the single most-used C++ book i own.[E�e
tiveC++2℄ E�e
tive C++, 2nd Edition, by S
ott Meyers.[E�e
tiveC++3℄ E�e
tive C++, 3rd Edition, by S
ott Meyers.[MoreE�e
tiveC++℄ More E�e
tive C++, by S
ott Meyers.[E�e
tiveSTL℄ E�e
tive STL, by S
ott Meyers.[Got
has℄ C++ Got
has, by Stephen C. Dewhurst.

126

