
libs11n Porting Guide

For libs11n version 1.2.x

s11n-devel@lists.sourceforge.net - http://s11n.net

ACHTUNG #1: this is a ''live'' document covering an in-development software library.
Ergo... it may very well contain some misleading or blatantly incorrect information! Please help
us improve the documentation by submitting your suggestions to our mailing list!

Abstract:

This document provides a general overview of the libs11n source tree, mainly for purposes of assisting in
porting libs11n to platforms other than its “native” GNU/Linux host.

This document assumes that the reader is well versed in C++ and knows what libs11n is:

http://s11n.net

Maintainer: stephan@s11n.net (list: s11n-devel@lists.sourceforge.net)

Table of Contents

 1 Preliminaries...2
 1.1 License ..2
 1.2 Disclaimers...2
 1.3 Feedback..2
 1.4 An invitation..2
 1.5 Document conventions...2
 1.6 Trademarks...3

 2 An introduction to the source tree...3
 2.1 Getting the sources..3
 2.2 Code portability..3
 2.3 libs11n as a static library..3
 2.4 Overview of code layers...4
 2.5 Source tree structure..4

 2.5.1 The philosophy of the include/ directory..5
 2.6 The build tools (“toc”)...5
 2.7 Optional add-ons..5

 3 Generated source code..6
 3.1 “at-files”...6
 3.2 <s11n.net/s11n/s11n_config.hpp>..6
 3.3 <s11n.net/s11n/plugin/plugin_config.hpp>...6
 3.4 Serializer implementations...6
 3.5 libs11n-config and libs11n.pc...7

 4 Platform-independent source tree (“nobuildfiles”)..7
 4.1 Creating a nobuildfiles tree...7

 5 Plugins support...7
 5.1 plugin.*.cpp...8

 6 Unix-like platforms (Linux, FreeBSD, Solaris, etc.)..8
 6.1 FreeBSD port..8
 6.2 Cygwin..8
 6.3 GNU “auto, my ass!” Autotools...8

 7 Microsoft Windows® platforms...8
 7.1 General notes about libs11n under Win32...8

 7.1.1 Exports...8
 7.1.2 Build flags...9

libs11n-porting-guide.odt 1 of 10 8 Feb 2007

http://s11n.net/
mailto:s11n-devel@lists.sourceforge.net
http://s11n.net/

 7.2 Visual C++ Express..9
 8 Macintosh platforms...9
 9 The end(?)..9

 1 Preliminaries

 1.1 License

"You cannot guaranty freedom of speech and enforce copyright law."

Ian Clarke

''This [document] is encrypted with ROT26 encoding. Decoding it is in violation of the Digital
Millennium Copyright Act.''

Anonymous Software Developer

This documentation is released into the Public Domain.

 1.2 Disclaimers

The obligatory disclaimers include:

1. This manual will make no sense whatsoever to most people. It is target at experienced C++
programmers (''intermediate level'' and higher), and makes many assumptions about prior C++
knowledge.

2. This software and documentation are PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

3. Reading disclaimers makes you go blind. ;)
4. Writing them is even worse. :/
5. This list of disclaimers might not contain all the necessary disclaimers.

And, finally:

libs11n's author (Stephan Beal) has limited access to platforms other than GNU/Linux. Thus any porting notes
for other platforms may be incorrect or untestable/untested. You have been warned.

 1.3 Feedback

Please send any and all feedback to our development list:

s11n-devel@lists.sourceforge.net

 1.4 An invitation

This project is always interested in feedback from users, be it in the form of criticism, code patches, test
reports, documentation, or fan mail. This document, in particular, cannot be made 100% complete without the
help of users of various computing platforms. If you are using (or would like to use) libs11n on a platform other
than GNU/Linux, your input on this manual would be greatly appreciated.

 1.5 Document conventions

We will use the following conventions throughout this document:

All relative filesystem paths are assumed to be relative from the top-most directory of your libs11n source tree
unless specifically stated otherwise.

C++ source code is formatted like this:

#include <s11n.net/s11n/s11nlite.hpp>
...

libs11n-porting-guide.odt 2 of 10 8 Feb 2007

mailto:s11n-devel@lists.sourceforge.net

Shell code (e.g., to be entered at a Unix shell prompt) is formatted like this:

prompt > some_command argument1 argument2 ... argumentN

If you are viewing this document in black and white, you might be able to tell the difference between C++ and
shell code blocks by their differing drop-shadows. If not, context should make clear what type of code you're
looking at.

 1.6 Trademarks

The following trademarks (or registered trademarks) are known to appear in this document:

● Windows is a registered trademark of Microsoft Corporation

● UNIX is a registered trademark of The Open Group. Here we use Unix to generically refer to Unix-like
operating systems (Linux, BSD, Solaris, etc.).

● Solaris is a registered trademark of Sun Microsystems

● Linux is a registered trademark of Linus Torvalds

● Macintosh is a registered trademark of Apple Computer, Inc.

Other trademarks may be used here and not properly acknowledged. Where this is the case, it is a case of
ignorant omission and not a wilful act of negligence.

 1.7 Credits

The following people have contributed, perhaps indirectly, to this document:

● Ashran did the first port of libs11n to Win32 platforms.

● Pete Harlow provided the template/skeleton for this document.

● Aaron Dalton did the initial FreeBSD port, which inspired the creation of this document.

 2 An introduction to the source tree
The libs11n source tree structure is based on several years of experience in maintaining various library source
trees. While it does not have a “perfect” structure, especially for cross-platform purposes, its structure is fairly
logical, straightforward, and maintainable. This chapter will introduce you to the source tree, giving the reader a
grasp on where the various parts of the library live.

Note that when we speak about “the” source tree here, we mean the “native” source tree. That is, the one
which is used as the master copy of the sources. This is the source tree used for libs11n's native platform,
GNU/Linux.

 2.1 Getting the sources

The source code can be downloaded from either of the following sources:

● http://s11n.net/download/

● http://sourceforge.net/projects/s11n

The code is managed via CVS [Concurrent Versioning System], and CVS copies can be checked out by
following the instructions listed on the SourceForge project page.

 2.2 Code portability

The libs11n core source code uses only ISO-standard C++ features. That said, we use features of C++ which
are relatively new and not supported on “older” compilers. As a general rule, any compiler which is less-
compliant than GNU gcc 3.2.x will not be able to build libs11n. GNU gcc 3.2+ are believed to be suitable,
though we do not explicitly test compatibility with arbitrarily older compilers (nor do we support older compilers
nor compilers which do not support ISO C++ standards).

The optional plugins support necessarily uses platform-specific APIs for loading shared libraries (DLLs).

All of that said, the source code is very portable while the build tree is not. The library is primarily developed on

libs11n-porting-guide.odt 3 of 10 8 Feb 2007

http://sourceforge.net/projects/s11n
http://s11n.net/download/

GNU/Linux machines and the build tree is exceedingly Linux-centric. Thus porting libs11n primarily consists of
copying the source files into a build system which works on a particular target platform.

Despite being GNU/Linux-centric, the build tools are known to fail on Debian Linux systems because of
“unusual” linking requirements on that platform. (We mean “unusual” in the sense of “different than most Linux
distributions, but not technically wrong”, and it is not intended to offend any Debian users.) Likewise, the build
tools don't work as-is on Cygwin environments because of odd linking rules on that platform.

 2.3 libs11n as a static library

libs11n cannot be built as a static library. More correctly, it can be built but will not work as expected. This is a
side-effect of the way the classloader works and the fact that unused symbols in a static library are not
imported into client code which links to the library. There are reportedly some linker-specific kludges to work
around this, but they have not been explored (nor are there plans to explore them).

Thus, building libs11n requires one of the following:

● Build it as a shared library.

● Compile it directly in to client code. The source code is designed to make it simple to include libs11n's
code directly into client projects.

● Build it separately and link the resulting object files directly in to client code.

 2.4 Overview of code layers

libs11n is broken down into several layers:

● The core library (src/s11n/) provides the API necessary for de/serializing data to/from memory but
does not provide any file/stream i/o support. The core library includes the often-mentioned classloader
API.

● The i/o layer (src/io/) provides the “standard” i/o layer. As the library manual describes, clients are
free to implement their own i/o layer if they like. Doing so is not trivial, however, and requires
implementing one's own file format handlers (amongst other things).

● s11nlite (src/lite/) is a wrapper around the core library and the i/o layer. It is the “recommended”
client-side interface, due to its simplicity, though client code is also free to directly use the core and
default i/o layers if they need to.

● Plugin support (src/plugin/) is used by the core library if it is enabled in s11n_config.hpp. This
allows the core to transparently load client-side serializable types dynamically from DLLs. The i/o layer
optionally uses this to dynamically load new i/o handlers.

● Serialization proxies (src/proxy/) are header files for plugging in support for serializing STL and
common POD types. These are not used by the above-mentioned layers, and are intended for use by
client-side code.

● s11nconvert (src/client/s11nconvert/) is a simple tool for converting s11n-compatible data
sources between any support formats. It also acts as a demonstration of how to use some of the
library's features.

These layers are described in detail in the library manual.

 2.5 Source tree structure

The source tree's top-level directory contains the following “significant” directories:

● doc/ = the documentation, including the library manual and Doxygen support files.

● include/ = initially empty, “public” libs11n headers are symlinked here during the build process. This
symlinking serves several purposes, which we will discuss later on. All libs11n-related headers formally
live somewhere under include/s11n.net/s11n/, and this is how implementation files reference
them (e.g., #include <s11n.net/s11n/foo.hpp>).

● src/ = various subdirectories containing sub-parts of the library. Sub-modules include:

● s11n/ = the core library

● io/ = the “standard” i/o layer. That is “one possible implementation”, since the core library is
ignorant of all i/o details and interfaces.

libs11n-porting-guide.odt 4 of 10 8 Feb 2007

● lite/ = the s11nlite abstraction layer.

● proxy/ = headers implementing/registering various s11n proxies, including support
algorithms for proxies. These are not part of the core itself, but does provide the
implementations for serializing STL containers and common POD types.

● client/ = applications which use the library, namely sample programs and s11nconvert.

● toc/ = the build tools. They only work on platforms hosting GNU versions of common system tools,
like GNU sed, GNU tar, GNU make, etc. For porting purposes, this directory can normally be
ignored/omitted.

For porting purposes, the src subdirectory is primarily of interest, and the include directory may also be
interesting (see below for more info on that directory).

 2.5.1 The philosophy of the include/ directory

Often times in large projects, disparate parts of the project become inter-dependent on each other. This
normally shows up as references to header files of other parts of the project. To avoid such circular
dependencies, and to help enforce a clean build structure, this library uses a tried-and-true approach to
handling header files. We will briefly describe it here...

Header files themselves are typically stored in the same directory as the implementation files (the .cpp files). In
practice, this is normally easier for developers to work with than physically separating the include files and
implementation files. Based on this, one might expect the implementation files to have #includes similar to the
following:

// myfile.cpp
#include “myfile.hpp”

In this library, however, the implementation files use fully-qualified includes, like this:

// myfile.cpp
#include <s11n.net/s11n/myfile.hpp>

At build-time we symlink myfile.hpp to include/s11n.net/s11n/myfile.hpp and add
TOP_SRC_DIR/include to the compiler's INCLUDES path. This setup helps ensure the following:

● It is impossible to build the library if two sub-modules have a circular dependency on each other
because the headers are symlinked directly before compilation of a sub-module. Note that this
“impossibility” is only guaranteed on a clean (re)build, and not on subsequent builds (where the
symlinked headers are already in place).

● The library internally uses the headers in the exact same way that client code is expected to use them.

● That public header files can be cleanly separated from internal header files (those only used by
implementation files) without having to physically separate the source files. We do this by simply not
symlinking/installing internal header files and internally #including them using “myfile.hpp”, as
opposed to <s11n.net/s11n/myfile.hpp>.

Several years of practice, across many different projects, has shown this approach to be generally superior to
the two most common alternatives of:

● Physically separate the include files and their implementations. This is logically similar to the
symlinking process, except symlinking “abstracts” this copy away, following the often-observed
“another layer of redirection” principal. In practice, this physical separation is normally a nuisance for
maintainers. It also allows circular dependencies to crop up.

● Keep the headers and implementation files together and use “myfile.hpp” includes instead of
<myfile.hpp>.

We could of course argue the merits of the various approaches, but the approach described above is the one
we use and that's not going to change, so there isn't much point in arguing anything here.

 2.6 The build tools (“toc”)

The libs11n tree uses a set of custom build tools called “toc” (“the other ./configure”). Toc is available as a
standalone project (http://toc.sourceforge.net), but the standalone copy is not needed for building libs11n – it
has its own copy of toc. Unlike most build systems, toc is designed to live entirely in the project source tree,
and is dependent only on common system tools (sed, perl, make, tar, gcc, etc.).

libs11n-porting-guide.odt 5 of 10 8 Feb 2007

http://toc.sourceforge.net/

Several people have asked why GNU Autotools are not used. Don't get me started – suffice it to say that i have
a deep-seated hatred for the GNU Autotools, based on years of maintaining source trees which use(d) them.
While the toc tools are not as cross-platform as GNU Autotools, they should work on the majority of systems
which host GNU system tools (including almost all Linux platforms).

This document will not go into much detail about how to maintain the toc-related files, as they are not normally
necessary when porting the build tree to non-Linux platforms. They can, for most purposes, be ignored by
porters.

 2.7 Optional add-ons

The standard build tree has optional support for two add-on libraries:

● libzfstream adds client-transparent support for saving/loading files using zlib and bz2lib
compression techniques. It is available from http://s11n.net/download/ and requires zlib and/or bz2lib to
function. If enabled, the s11n::io code (under src/io/) automatically makes use of it when reading
files, and automatic compression of files can be enabled client-side by including
<s11n.net/zfstream/zfstream.hpp> and calling zfstream::compression_policy(), as
described in the zfstream API documentation.

● libexpat is the de facto standard XML parser for Unix platforms and is available from
http://expat.sourceforge.net. In libs11n, enabling this support only adds one additional serializer (i/o
handler) to the library, and does not otherwise affect the library.

If the configuration process finds these libraries, they are enabled automatically and flags are set in
s11n_config.hpp to alert the sources that these features are available.

 3 Generated source code
Some of the source code for libs11n is generated by the configure process or external applications. When
porting to other platforms, such generated files must normally be pre-generated on a Linux host or generated
on the target host via another mechanism.

The main generated files are described below.

 3.1 “at-files”

Several of the generated files are built from so-called “at-files”. At-files are simply template text files similar to
input files conventionally used by the GNU Autotools, with tokens being surrounded by at-signs, e.g.
@AT_TOKEN@. By convention, such input files have a “.at” extension.

The configure/build process uses a tool (toc/bin/atsign_parse) to parse out the @AT_TOKENS@ and
replace them with values determined by the configuration process. The atsign_parse script is a standalone
Perl program and can be used independently of the other build tools.

 3.2 <s11n.net/s11n/s11n_config.hpp>

This header is the primary configuration file for the source code, and defines, amongst other things, macros
which determine:

● The library version number, license, URL, maintainer's email address, etc.

● Whether or not to use some “add-on” features, like libzfstream, libexpat, and plugins.

● Defines some shared paths for the library's components or add-ons.

This header is generated at configure-time from the file src/s11n/s11n_config.hpp.at. When editing the file for
non-GNU platforms, it is best to “assume the worst” and disable any optional features (e.g. libzfstream,
libexpat, plugins) and get it compiling before trying to enable any optional features.

 3.3 <s11n.net/s11n/plugin/plugin_config.hpp>

This header is intended to be used only if plugins support is enabled (via s11n_config.hpp). It defines
which DLL loader to use, the shared plugins path, and file extensions used by DLLs (e.g. “.so” on most Unix
platforms and “.dll” on Windows platforms). It is generated at configure-time from
src/plugin/plugin_config.hpp.at.

libs11n-porting-guide.odt 6 of 10 8 Feb 2007

http://expat.sourceforge.net/
http://s11n.net/download/

 3.4 Serializer implementations

The majority of the serializers (i/o handlers, which all live under src/io/) use GNU flex to implement their
input-parsing code. This has benefits and drawbacks. We won't go into the benefits here, but will cover some of
the drawbacks because some specifically affect the portability of the source tree.

As of this writing (August 2006), the generation of flex-based output is only known to work with GNU flex 2.5.4.
This version has been the “standard” version of flex for many years. Unfortunately, newer versions of flex are
starting to be installed on Linux distributions but generate non-compiling code (at least in C++ mode). Versions
newer than 2.5.4 cannot currently be used by libs11n. For this reason, the generated flex files are stored in
CVS along with their source files. Generally speaking, generated files are not stored in CVS because they are
easily creatable from their source files, but these files are an exception. The flex input files are all named
src/io/XXX/XXX_serializer.flex, where XXX is one of the following: compact, funtxt, funxml, parens,
simplexml, wesnoth. [Note that the expat serializer does not use flex, but uses libexpat's input-parsing
capabilities instead.]

The standard downloadable source tree contains the generated files (XXX_serializer.flex.cpp) and
only uses flex to regenerate them if it finds version 2.5.4 on the system.

Long-term, it would be really nice to reimplement the serializers to not rely on flex. This is, however, a
significant amount of work, and is not planned any time in the near-term future (i am so sick of writing input
parsers!). The compact_serializer can be reimplemented relatively easily without writing a complex parser, but
the others have more complex grammars than the compact_serializer class, and therefore benefit from being
generated by a parser generator tool like flex.

 3.5 libs11n-config and libs11n.pc

The configure process generates the following extra files which are often useful by client-side build processes:

● libs11n.pc is intended for use by the pkg-config tool. This file is generated by
toc/tests/create_pkg-config_data.sh, which is run as part of the configure process and is
not usable standalone.

● libs11n-config is a shell script which can output useful information about the library, including
precompiler and linker options required by client code. Run it without arguments to get a list of options.
It is created from the input file toc/tests/PACKAGE_NAME-config.at.

These files are not strictly necessary when porting to non-Linux platforms but might be helpful, particularly
when porting to other Unix-like platforms.

 4 Platform-independent source tree (“nobuildfiles”)
As part of the standard release process, we release an archive named libs11n-VERSION-
nobuildfiles.zip. That file contains a “flattened” copy of the build tree. All generated files are copied
directly into the source tree and the configuration header (s11n_config.hpp) is set up to disable platform-
specific features. Additionally, the (normally-symlinked) headers are copied directly into their “real” destination
(include/s11n.net/...) because symlinks are not supported on all platforms.

This release is intended to be used as a basis for including libs11n directly into client-side project trees or for
creating platform-specific libs11n build trees.

The “nobuildfiles” release should build as-is on Unix platforms hosting GNU Make and GNU gcc by simply
doing the following:

~/top_src_dir/ > cd src
make

The sample makefile can be used as a starting point for porting the tree to other Unix platforms. It is specifically
designed to demonstrate the inter-dependencies of the various source code files without providing any
“advanced” build support, like dependencies tracking.

 4.1 Creating a nobuildfiles tree

The nobuildfiles source tree can be generated from the main source tree by doing the following on a fully-built
copy of the master source tree, like so:

~/top_s11n_src_dir/ > make nobuild

That will generate the nobuildfiles source tree, which is independent of code generators and such and is

libs11n-porting-guide.odt 7 of 10 8 Feb 2007

suitable for direct porting into arbitrary project trees or for use as a basis for porting libs11n to arbitrary non-
Linux platforms.

Note that the name “nobuildfiles” is marginally wrong and should be renamed. However, lots of docs use this
name so we'll keep it around for at least the foreseeable future.

 5 Plugins support
Because the dynamic loading of types is a platform-specific feature, the plugins layer for libs11n is an optional
component. It is enabled or disabled in s11n_config.hpp. Optionally, it can be enabled and have a no-op
(platform-independent) implementation, as described briefly below.

 5.1 plugin.*.cpp

The files named plugin.*.cpp may require special treatment. Specifically, they should not be added to the
compilation process. The file plugin.cpp includes one of the plugin.*.cpp files, depending on options set
in s11n_config.hpp and/or plugin_config.hpp. These files are listed here:

● plugin.noop.cpp is a no-op implementation. This allows the s11n core to use the plugin API even
though it can't load plugins. This is intended to simplify some of the libs11n internal implementation and
potentially simplify some client code. This is the default plugin implementation.

● plugin.dl.cpp is used on platforms which have either libdl or libltdl. libdl is the
“conventional” (but not quite standard) DLL loader for Unix platforms and libltdl is a more portable
libdl workalike released by the GNU Project. Their usage is very similar, and thus they are packed
into a single implementation file.

● plugin.win32.cpp is the Windows implementation. It uses Win32's LoadModule() to load DLLs.

Note that if plugin support is disabled in s11n_config.hpp, all of the plugin*.* files can be removed from
the build process without adversely affecting the library. It simply won't be able to dynamically load serializers
and client-side serializable types, both of which are admittedly seldom-used features. Alternately, enable the
plugins support but disable the libdl/libltdl/LoadModule options to force the no-op implementation to be used.

 6 Unix-like platforms (Linux, FreeBSD, Solaris, etc.)
Generally speaking, the libs11n code itself is portable as-is to a wide variety of platforms, Unix-like or not. The
build process, however, is not always easily portable. When running on a system which does not have a full
suite of GNU tools, it is recommended that one abandon the standard build tree and use build tools more
suited to their platform.

 6.1 FreeBSD port

There is a FreeBSD port of libs11n available here:

http://www.freebsd.org/cgi/ports.cgi?query=s11n&stype=all

As that is maintained by a third party, we cannot guaranty that it will always stay up to date, however.

As far as i am aware, the FreeBSD port is essentially the “nobuildfiles” tree with a modified Makefile.

 6.2 Cygwin

The standard build tree “should” work under Cygwin but it does not because it does not properly accommodate
the bastard Unix/Windows nature of Cygwin and unique linking requirements on the Cygwin platform. The
“nobuildfiles” release can be used as a starting point for building libs11n under Cygwin.

 6.3 GNU “auto, my ass!” Autotools

It is believed that the source code can easily be ported into a GNU Autotools framework. The code generation
processes, while Unix-centric, would probably require a great deal of porting work for use in the Autotools, so
porters are recommended to use the nobuildfiles tree as a starting point.

libs11n-porting-guide.odt 8 of 10 8 Feb 2007

http://www.freebsd.org/cgi/ports.cgi?query=s11n&stype=all

 6.4 Potential linking considerations

The s11n classloader is modelled off of the work described in this paper:

http://s11n.net/papers/#classloading_cpp

In essence, it works by using anonymous objects to register loadable types with the s11n factory interface
when an application (or DLL) is initialized. In the case of applications this happens pre-main() and for DLLs it
happens (or should happen!) when they are opened.

One peculiarity of this approach is that on platforms using gcc it requires that client applications which use
dynamically loadable types to be linked with the -rdynamic flag (also known as -export-dynamic). The
term “dynamically loadable” actually refers to all serializable types, whether or not they are loaded via a DLL or
compiled directly in to an application. In theory, if libs11n is directly compiled into an application, as opposed to
being a linked library, this flag “might not” be needed. If libs11n is loaded from a DLL, the linker flag is certainly
needed in order for the classloader to work properly.

Another peculiarity of this classloader model is that linking libs11n as a static library will not work because it
internally uses the classloader to load types, such as the Serializers (i/o handlers). When linking against a
static libs11n, the factory registrations never happen and the code will compile but will not be able to save/load
except to/from memory (in the case of serialization to memory, we don't need a data format, and therefore don't
need to load a Serializer). Even in the case of serialization to memory, it won't work if the serializables'
registrations are not linked directly in to the application or in a DLL used by the application.

In short, the linker must export all symbols in the application, and must not optimize away “unused objects”, in
order to ensure that the classloader works properly.

 7 Microsoft Windows® platforms
As of version 1.1.2, libs11n is known to compile on Win32 platforms. In August 2006 (version 1.2.4), libs11n's
author accepted a job which requires that he have a PC running Windows. At that point, it became possible to
officially support, or at least partially support, Windows platforms for libs11n.

This section is based on my very limited knowledge of the Win32 development tools – your mileage may vary.

 7.1 General notes about libs11n under Win32

 7.1.1 Exports and DLLs

We do not currently have libs11n running as a full-featured shared library under Windows. The reason for this
is the “unusual” code requirements placed on DLLs by Windows. For example, it is necessary to explicitly flag
“exportable” classes so that the Windows linker can make them available to code which wants to use the DLL.
This requirement does not exist on Linux platforms, and therefore the proper exports are not in place in all of
the code. The library may compile as a DLL, but will not work correctly because of missing exports.

The “proper” way to add exports to libs11n code is to include <s11n.net/s11n/export.hpp> and use the
S11N_EXPORT_API macro instead of the Windows-specific __declspec(dllexport) marker. On non-
Windows platforms the S11N_EXPORT_API macro expands to nothing (it is empty). For example:

#include <s11n.net/s11n/export.hpp>
...
class S11N_EXPORT_API my_class { ... };

There are some open questions about where exactly this export should go for class templates, and whether or
not class templates have to be explicitly instantiated in order to properly export them. Initial research suggests
that template types must be explicitly instantiated, but this requirement is not reasonable for libs11n, which
doesn't know about all client-side types and therefore cannot explicitly instantiate them.

For more information on this problem, please refer to your favourite search engine or this Microsoft web page:

http://msdn2.microsoft.com/en-us/library/twa2aw10.aspx

Until these questions are satisfactorily answered (which at the moment seems impossible), it is unlikely that we
will have a working libs11n DLL for Windows platforms.

i have attempted to work around the problem by building with the MinGW/Cygwin tools, but so far no luck.

libs11n-porting-guide.odt 9 of 10 8 Feb 2007

http://msdn2.microsoft.com/en-us/library/twa2aw10.aspx
http://s11n.net/papers/#classloading_cpp

 7.1.2 Build flags

Here is an overview of known build flags which might have to be set in order to compile the libs11n sources
under the various Visual C++ environments:

● The WIN32 macro must be defined (the exact value is unimportant). It is believed to be defined
automatically by the compiler, so this should be a no-op.

● The INCLUDES path must point to the top-most include directory shipped with the source tree
(normally named include). The implementation files all refer to the public headers using fully-
qualified names (e.g., <s11n.net/s11n/foo.hpp>), so they can find the headers as long as your
INCLUDES path is set properly. Some exceptional headers are “internal-only” and live in the same
directory as the source files. Implementation files include such headers using local-style includes (e.g.
#include “foo.hpp”).

● Turn precompiled headers OFF. They will not work here.

● Make sure that the “C++ Language Extensions” option is turned on (the default), otherwise the code
will fail to compile in <windows.h>. Like it or not, the core Windows headers require some Microsoft-
specific extensions to the C++ language.

● The option to “Keep Unreferenced Data” must be explicitly enabled or classloading will not work. If you
get exceptions saying that serializers cannot be loaded (for example) then this is almost certainly the
problem. This is a side-effect of the way the classloader works, which requires the creation of
anonymous objects at application (or DLL) initialization time in order to register loadable types with
their classloader. By default, VC++ wants to strip out those anonymous objects.

The README.WIN32 file which comes with the source tree contains more detailed information about building
libs11n on Win32 platforms.

 7.2 Visual C++ Express

In August 2006 the first Win32 release of libs11n was made. It is packaged as a “solution” (project) file for
Visual C++ Express, which is a freely-downloadable C++ compiler for Windows platforms, available from:

http://msdn.microsoft.com/vstudio/express/

Users may need to modify some parts (in particular, the INCLUDES path) to get it to compile on their system. It
can, in any case, be used as a starting point for getting libs11n support into client-side applications.

 8 Macintosh platforms
We currently have no information about building libs11n on any Macintosh platforms, including the BSD-based
OS/X (also known as the “Darwin” platform). Likewise, we also have no port of the plugins layer for Macintosh
platforms. In theory, the core library should be compilable, without plugins support, on arbitrary (but recent)
Mac platforms.

 9 The end(?)
This document can be considered to be a continual work-in-progress. If you believe that you can help us
improve it, please get in touch:

s11n-devel@lists.sourceforge.net

Thanks for taking the time to Read The Fine Manual!

libs11n-porting-guide.odt 10 of 10 8 Feb 2007

mailto:s11n-devel@lists.sourceforge.net
http://msdn.microsoft.com/vstudio/express/

	 1 Preliminaries
	 1.1 License
	 1.2 Disclaimers
	 1.3 Feedback
	 1.4 An invitation
	 1.5 Document conventions
	 1.6 Trademarks
	 1.7 Credits

	 2 An introduction to the source tree
	 2.1 Getting the sources
	 2.2 Code portability
	 2.3 libs11n as a static library
	 2.4 Overview of code layers
	 2.5 Source tree structure
	 2.5.1 The philosophy of the include/ directory

	 2.6 The build tools (“toc”)
	 2.7 Optional add-ons

	 3 Generated source code
	 3.1 “at-files”
	 3.2 <s11n.net/s11n/s11n_config.hpp>
	 3.3 <s11n.net/s11n/plugin/plugin_config.hpp>
	 3.4 Serializer implementations
	 3.5 libs11n-config and libs11n.pc

	 4 Platform-independent source tree (“nobuildfiles”)
	 4.1 Creating a nobuildfiles tree

	 5 Plugins support
	 5.1 plugin.*.cpp

	 6 Unix-like platforms (Linux, FreeBSD, Solaris, etc.)
	 6.1 FreeBSD port
	 6.2 Cygwin
	 6.3 GNU “auto, my ass!” Autotools
	 6.4 Potential linking considerations

	 7 Microsoft Windows® platforms
	 7.1 General notes about libs11n under Win32
	 7.1.1 Exports and DLLs
	 7.1.2 Build flags

	 7.2 Visual C++ Express

	 8 Macintosh platforms
	 9 The end(?)

