
Generi
 Cleanup in C++stephan�s11n.netSeptember 28, 2005Abstra
tThis arti
le develops a proje
t-neutral approa
h to
leaning up standard
ontainers in C++. We willshow how the
leanup of any
ontainer
an be redu
ed to a single API
all, no matter how deeply nestedthe
ontainer is, nor how many sub
ontainers it may
ontain, nor with
lient-side regard to whether the
ontained items are pointer- or value-types. This opens up the door to providing ex
eption-safe, pointer-holding
ontainers without the use of smart pointers. The approa
h is suitable for a wide variety of types,but we will demonstrate with standard
ontainers be
ause those are a parti
ular problem when it
omes to
leaning up unmanaged pointers in the fa
e of ex
eptions.This arti
le and the sour
e
ode developed for it are released into the Publi
 Domain.Revision History:10 July 2005: initial revisionContents1 Introdu
tion 11.1 Preliminaries . 11.2 What is this all about? . 21.3 Motivating problem . 31.4 Sour
e
ode . 42 Constru
ting the implementation 42.1 A
lient-side API . 42.2
leanup_traits<T> . 42.3
leanup_fun
tor . 52.4 Cleaning up a list<T> . 62.5 Cleaning up a map<K,V> . 72.6 Prote
ting against leaks during ex
eptions . 83 Wrapping up 93.1 Re-examining the motivating problem . 93.2 Simplifying
reation of
leanup fun
tors or
leanup_traits . 93.3 It ain't just for
ontainers... 93.4 What about
leaning up void pointers and arrays? . 103.5 Ciao! . 10Referen
es 101 Introdu
tion1.1 PreliminariesThis arti
le assumes mu
h prior knowledge regarding C++. In parti
ular, we will make many assumptionsabout your understanding of how template spe
ializations and partial template spe
ializations work. If these1

terms mean nothing to you, this arti
le isn't likely to, either, but you
an
ertainly �nd some good tutorials onthe topi
 on the net, or in the
lassi
 book C++ Templates, the Complete Guide, by Ni
olai Josuttis.Just as we will make many assumptions about your knowledge, we're also going to make some about mine: inparti
ular the knowledge that i am often mistaken! If you �nd a bug in this arti
le or the a

ompanying sour
e
ode, please report it. Any and all feedba
k are wel
omed, and your feedba
k may be used to improve futureversions of this arti
le and the sour
e
ode. You
an rea
h me via email:stephan�s11n.netThe home page for this paper is:http://s11n.net/papers/This arti
le is dedi
ated to martin f. kra�t (http://libfa
.sour
eforge.net) and Christian Pro
hnow (http://www.p
lasses.
om),both of whom provided very in�uential feedba
k while i was working through libs11n's ex
eption handling rules.That work was the main inspiration for this arti
le.1.2 What is this all about?Have you ever had a
ontainer like this:map<int,T*>or this:list< map<int,T*> >or even this:deque<list<multimap<int,T*>*>*>???You probably have, and you are probably well aware the fa
t that in none of those
ases are the pointers ownedby their
ontainers. What does that mean? It means, if we destroy the
ontainers with transfering ownershipof the
ontained pointers, the pointers will leak.There are several approa
hes to handling this type of
leanup:
• Manually walk the
ontainer, or use std::for_ea
h() and appropriate fun
tors, and delete the pointers asyou go. This requires knowing the stru
ture of the
ontained elements, and probably requires having someidea of their type(s), and thus normally requires at least some small amount of hand-written,
ontainer-spe
i�

ode per
leanup operation.
• Use proxy obje
ts to manage a

ess to your
ontainers, su
h that the proxies
lean up the
ontainers whenthe proxies are destroyed.
• Fundamantally the same as proxying, write your own
ontainers whi
h manage pointers. It is not un
om-mon to see a PtrList
lass template in utility libraries.
• Use smart pointers, so that when a
ontainer holding the pointers is destroyed, the pointers a
tually
lean up themselves. The only signi�
ant down-side to this approa
h is that it imposes a spe
i�
 smartpointer implementation on the
lient. As there isn't yet a standardized smart pointer implementation,the
hoi
e of implementation is still very mu
h a personal issue, and not one i feel is worth imposing onusers of a given library unless the smart pointers plays a signi�
ant role in the en
ompassing library (e.g.,as in Boost [www.boost.org℄). While we
annot dis
ount smart pointers as a viable solution, we will not
onsider smart pointers here.There are
ertainly other approa
hes, but those are the ones i
an think about o� the top of my head.We're going to try a di�erent route. The goal is, in e�e
t, having a single fun
tion with whi
h we
an
leanup arbitrary
ontaintainers, irrespe
tive of nesting level, pointerness o� the
ontained types, and the a
tual
ontained types themselves (provided they are
ompatible with our framework).2

1.3 Motivating problemThe original motivation for the API we will develop here
ame about while working on libs11n 1.1.3. Whileexperimenting with the ex
eption
onventions, i realized that there were ex
eption/failure
ases in whi
h thelibrary would leak sometimes. The behaviour was predi
table and de�nable, but entirely dependent on whattemplatized types were being used. The fundamental problem was, for the pla
es at whi
h this happened therewas literally no logi
al
ourse of a
tion the
ode
ould take. The only thing it
ould do was
all delete andhope for the best. And that works in many
ases... but not in the
ase of
ontainers holding pointers, or nested
ontainers where one of the sub-
ontainers holds unmanaged pointers. i unfortunately failed to see that earlyon, as i didn't fully
onsider the full impli
ations of deleting any given type. At that level of the library failuresrarely happen (they happen up-stream, in i/o), so the bug went unnoti
ed until a full review of the
ore sour
e
ode a long time (a bit over a year) after the
ode was introdu
ed into the library.In any
ase, this was
ompletely una

eptable behaviour on the library's part, and needed to be �xed. So, i satdown to implement an idea i'd been tossing around for almost a year, and had tried experimentally in anothertree at one point. This paper
overs that approa
h, and shows that it
an signi�
antly simplify the
leanup ofnot only
ontainers, but arbitrary types whi
h hold unmanaged pointers. We will develop a small library whi
hprovides su
h support to arbitrary
lient
ode.To provide a
on
rete example let's go over the
ase in the s11n library so we
an make it
lear why we neededsomething more �exible than delete(). Rather that use the s11n
ode for demonstration, whi
h would requirea signi�
ant deal more ba
kground knowledge than ne
essary for our purposes, we will abstra
t it a bit.Assume we have the following free fun
tion:template <typename T> T *
reate_obje
t(
onst data_sour
e & sr
);Assume that data_sour
e is a DOM-like
ontainer, but that's not at all important for our purposes. i point itout only to explain why the fun
tion argument is
onst (whereas an input stream would not be
onst).This fun
tion's purpose is to
reate an obje
t, deserialize it using the given data sour
e, and give it ba
k to theuser. How it does this is unimportant for purposes of solving the
leanup problem, so we won't go into thatlevel of detail.The
onventions of the fun
tion are that on su

ess it returns a non-null pointer (whi
h the
aller owns), andon error it returns 0 (or may propagate an ex
eption from elsewhere).It performs the following operations:1. Try to
reate a T obje
t. If that fails, we
an safely bail out with no
han
e of a leak. (This
an failbe
ause we use a
lassloader to load new types, polymorphi
ally if needed.)2. Use some algorithm to populate the obje
t from sr
 (i.e., to �deserialize� it).3. If the operation su

eeds, return the new obje
t, else...4. T is in an unde�ned state - we need to destroy it. How to safely destroy this obje
t is the sole topi
of this arti
le!The problem is, that approa
h will work �ne for any T whi
h does not
ontain �unmanaged pointers� - pointersnobody (yet) owns, in the sense of �who's going to delete them?� On
e T is a
ontainer<X*>, that logi
 breaksdown
onsiderably. What we need is a way to walk
ontainers without having to know their types nor underlyingstru
ture, su
h that we
an deallo
ate any su
h pointers, even in the
ase of nested
ontainers.This paper explains how we
an satisfa
torily solve this problem for any T whi
h meets a minimal set ofrequirements. Namely:1. If T is a pointer-quali�ed type, this
ode must be legal: delete anInstan
eOfT;2. The destru
tor must not throw. This is a general C++ guideline, and types with destru
tors that throware
ategori
ally forbidden from use with the STL [CCS2005℄.That's it, really, as far as
on
rete requirements go. Some types, namely
ontainers, will have some �indire
t�requirements, and we will show how to a

ommodate those as our framework is �eshed out.
3

1.4 Sour
e
odeThe
omplete sour
e
ode developed for this arti
le should be available at the arti
le's home page:http://s11n.net/papers/The sour
e
ode should build on any C++
ompiler supporting partial template spe
ialization. Compilerswithout this feature are impli
itely not supported, be
ause this feature is (in my opinion) essential to solvingthis problem satisfa
torily.2 Constru
ting the implementationNow let's build a library
apable of handling our motivating problem...2.1 A
lient-side APIFirst let's lay down our �
lient API� - the publi
 interfa
e whi
h serves as the
ore entry point into our eventualfun
tionality. Let's try:template <typename T> void
leanup(T & obj) throw();The job of the fun
tion is to �
lean up� the obje
t, with the exa
t de�nition of �
lean up� being left a bit hazybe
ause it is inherently type-spe
i�
. In brief �
lean up� essentially means �delete pointers,� but might alsoin
lude type-spe
i�
 behaviours. We will see examples of this soon, so don't worry too mu
h about these detailsjust yet.The throw() (i.e., throws no ex
eptions) quali�
ation would seem to be justi�ed. As throwing ex
eptions fromdestru
tors is normally
onsidered a bad idea in C++, by extension we
an
on
lude that
leanup()'s logi
alrole in the destru
tion pro
ess warrants the same guaranty. This justi�
ation is admittedly philosophi
al innature, so implementors should feel free to
hange the throw spe
i�
ation to suit them. [A few days after writingthis i bought a
opy of [CCS2005℄, and its Item 51 seems to ba
k up this de
ision.℄We're going to jump the gun just a small bit: as it turns out, it simpli�es some of our algorithms later if wehave the following overload for our
leanup fun
tion:template <typename T> void
leanup(T * & obj) throw();The di�eren
e between this and the �rst form is that this one deletes the obje
t and assigns it to zero afterpassing the
all on to
leanup<T>(*obj). Why we want this will be
ome
lear later on. The assignment tozero is not mandatory, but seems reasonable and helps us test the
ode for proper fun
tionality. For example,the following
ode demonstrates the e�e
t of the se
ond form:T * t = new T;
leanup<T>(t);assert(0 == t);The assertion will pass if all has gone well (and if NDEBUG isn't de�ned, whi
h disables assert()).With those two fun
tions, we have the
omplete publi
 API for the fun
tionality we need. What we neednow is some way of translating spe
i�
 requirements for spe
i�
 types into
alls to di�erent handlers. For ourpurposes, templates �ll this role ni
ely, so we will pursue a solution based upon templates and �
ompile-timepolymorphism.�2.2
leanup_traits<T>Now we jump to the �middle part� of the problem and de�ne a traits type. The type has only one purpose: tomap a given T to a set of rules (a fun
tor) whi
h knows how to
lean up a T obje
t. The type looks somethinglike this:template <typename T>
leanup_traits { 4

typedef some_fun
tor
leanup_fun
tor; //
leanup rules for Ttypedef T
leaned_type; // for use with algos/fun
tors};We will use the
leanup_traits type to translate
alls to
leanup<T>() through the proper (installed) fun
tor.Above i said this was the �middle� of the problem. Let's see how we
an
onne
t this part with the �rst part,our publi
 API. Here are potential implementations of our
leanup() fun
tions:template <typename T>void
leanup(T & t) {typedef typename
leanup_traits<T>::
leanup_fun
tor CF;CF
f;
f(t);}template <typename T>void
leanup(T * & t) {
leanup(*t);delete t;t = 0;}Though the �rst variant
an be implemented as one long line, i have broken it down into smaller steps, �rst for
larity, and se
ondly be
ause some
ompilers don't appear to like:typename
leanup_traits<T>::
leanup_fun
tor()(t);Regarding the se
ond form: if you aren't familiar with the referen
e-to-pointer syntax, don't be alarmed. Whileodd-looking, it is perfe
tly valid and allows us to do some things to a pointer whi
h we
annot do to a pointerpassed in to a fun
tion, like assign it to zero.Before we go on, let's make one highly arguable addition whi
h eases my mind a bit:template <typename T>
leanup_traits<T*> : publi

leanup_traits<T> {};i hope to be able to explain/justify this fully at some point. The main impli
ation of it is that
leanup_traits<T*>::
leaned_typedoes not have a pointer quali�er. This simpli�es some algorithm
ode later on, but is otherwise not essential tothe framework.If your proje
t already uses some sort of traits type for storing type information, you might
onsider adding
leanup_fun
tor to your existing traits type, rather using
leanup_traits. Whether this is appropriate ornot depends on your proje
t and the s
ope of your traits type.2.3
leanup_fun
torRemember that some_fun
tor type we de
lared in
leanup_traits? Well, we need to de�ne it. In fa
t,we need a default implementation we
an spe
ify in the base
leanup_traits de�nition. As it turns out, areasonable implementation does exist for arbitrary types:
• For pointer types, delete them.
• For referen
e/value types, do nothing. Let the normal destru
tion of sta
k-allo
ated obje
ts do its thing.That is a bit oversimpli�ed, but that's essentially what it boils down to. Note that we have shifted the pointer-handling into
leanup(T*&), so the spe
i�

leanup fun
tors do not know whether the obje
t they are
leaningup is itself a pointer or a referen
e.Here is what the default implementation of the
leanup fun
tor looks like:5

template <typename T>default_
leanup_fun
tor {typedef T
leaned_type;void operator()(
leaned_type &)
onst {// NOTHING!}};Why on earth do we want to do nothing there? Be
ause we
annot apply any given set of rules to a referen
e ofany given type, so the default rule (i.e., the default implementation) is to do nothing. Before moving on, let'sshow that this is really the behaviour we want via examining a fun
tion like the one in our motivating example:template <typename T>T *
reate_obje
t(SomeType input) {T * t = new T;if(! restore_state(input,*t)) {
leanup(t); // t is deleted and assigned 0}return t;}(Note that we have a potential leak in the
ase of an ex
eption, but we will
over that later on.)Let's mentally substitute some various types for T and verify what
leanup(t) does:
• T is a POD type: t is
leaned up (a no-op) then deleted.
• T is a
lient-side type: t is
leaned up (no-op unless spe
ial
leanup_traits<T>::
leanup_fun
torde�ned) and deleted. This is normally
orre
t for
lient-side
lasses.
• T is a
ontainer: this is where we need to take
are. Read on...Now, if we're
omfortable with the
onventions we've laid out so far (they seem reasonable enough to me),we are a
tually done with the �rst and se
ond layers of the framework. The �nal layer is in the type-spe
i�

leanup rules.What we need now is to install rules for spe
i�

ontainers, whi
h should walk the
ontainers and
all
leanup()on ea
h item. This
an be done in one of two ways:1. Spe
ialize, or partially spe
ialize,
leanup_traits<T> for the
ontainer type.2. Spe
ialize, or partially spe
ialize, default_
leanup_fun
tor<T> for the
ontainer type. (This is why thetemplate parameter for the default fun
tor is spe
i�ed at the
lass level, not fun
tion level.)The approa
hes are equivalent, and whi
h you use is probably a question of taste and existing proje
t
onventions(if any).2.4 Cleaning up a list<T>Given our
ore API and a default
leanup fun
tor, we fundamentally have everything we need to
lean upnearly any stru
ture. As the main motivation for this arti
le is standard
ontainers, let's start with a simpleone: list<T>, where T may optionally be pointer-quali�ed.Above we listed two ways to install rules for a type with the
ore framework. For this example we will spe
ializethe default fun
tor, though this approa
h is fundamentally no di�erent than spe
ializing
leanup_traits andspe
ifying a di�erent fun
tor.Before we start, let's jump a bit ahead (again) and write a small fun
tor whi
h we will use very soon to simplifythe list-walking
ode: 6

stru
t do_
leanup {template <typename T> void operator()(T & t) throw() {
leanup(t);}template <typename T> void operator()(T * & t) throw() {
leanup<T>(t);}};Now let's �x
leanup<list<T*>>() so that it works properly:template <typename VT>stru
t default_
leanup_fun
tor< std::list< VT > > {typedef std::list< VT >
leaned_type;void operator()(
leaned_type &
) throw() {std::for_ea
h(
.begin(),
.end(), do_
leanup());
.
lear();}};What we've done is a
tually ensured two things: that both
leanup<list<T*>>() and
leanup<list<T>>()will work as expe
ted for any T whi
h has a valid
leanup fun
tor installed.The above spe
ialization of the default template works for all standard list-like
ontainers, not just std::list:the only thing whi
h needs to be
hanged is the std::list text. This in
ludes ve
tor, deque, set andmultiset, plus your own types whi
h are
onventions-
ompatible with those.Now let's look again at the behaviour of this
all:typedef list<T *> ListT;ListT list;... populate list ...
leanup(list);Let's assume T is:
• a POD: ea
h will be
leaned up (a no-op) and then deleted.
• list<int>: ea
h sublist will be re
usively walked and
leaned up, then deleted.
• list<list<list<X*>*>*>: same as above. So far so good.
• list<map<int,X*>>: the pointers in the map will be leaked.We know how to �x that last
ase, so let's do it...2.5 Cleaning up a map<K,V>Clearing a map is almost like
leaning a list. There is one glaring problem, however: the keys of maps are
onstant obje
ts. In short, this means we
annot apply
leanup rules to them without violating their
onstness.Given this, and the rarity of using unmanaged pointers as keys in maps, we will
hi
ken out and de
lare thatmap keys are not
leaned up by our rules.Here's what a
leanup fun
tor for all standard maps might look:template <typename KT, typename MT>stru
t default_
leanup_fun
tor< std::map< KT, MT > > {7

typedef std::map< KT, MT >
leaned_type;void operator()(
leaned_type &
) throw() {typedef typename
leaned_type::iterator IT;IT b =
.begin();IT e =
.end();if(e == b) return;typedef typename
leanup_traits<MT>::
leaned_type MTBase; // strippingpointer partfor(; e != b; ++b) {
leanup<MTBase>((*b).se
ond); // this is why we wanted to stripany pointer part}
.
lear();}};As for the list-based algorithm, this exa
t same
ode will also work with multimaps: simply repla
e std::mapwith std::multimap. It is also ignorant of the pointerness of the
ontained types: they are handled identi
allyregardless of whi
h they are. The only di�eren
e in pointer-vs-referen
e handling is in
leanup(), where thepointer-based overload will delete the pointers, whereas sta
k-allo
ated obje
ts will be destroyed in the
all to
.
lear().Now let's go look again at the
leanup of our infamous list<T> when T is a map type. When the list is
leanedup, the map will be walked and any pointers in the �value part� of the map are freed (again, keys are not be
ausethey are
onst). So the following will work as expe
ted:typedef map< int, list< map < string, X *> *> > MapT;MapT map;... populate map ...
leanup(map);Through the re
ursive appli
ation of the
leanup() algorithms, the
ontainers are ea
h walked and any pointerentries deleted. Non-pointer entries are either skipped (via the no-op default fun
tor) or walked (if
ontainers),but not deleted (whi
h they
an't be). Any sta
k-allo
ated obje
ts will be destroyed either by their
ontainergoing out of s
ope or via an expli
it
all to
lear() in the
leanup fun
tor.It might be desireable to use a template metaprogramming te
hnique to emit a warning, or even throw anex
eption, if the key part of the map is a pointer. Remember that throwing is likely to
ause the programto abort, be
ause
leanup() is de
lared as no-throw. This may very well be preferred over a leak of thosepointers, however. For the very brave, feel free to
ast away the
onstness and
lean up the keys - my respe
tfor
onstness prohibits me from doing so.2.6 Prote
ting against leaks during ex
eptionsGiven our above, API, we have all that we really need to prote
t against a leak in our motivating example.Let's look at it again:template <typename T>T *
reate_obje
t(SomeType input) {T * t = new T;try {if(! restore_state(input,*t)) {
leanup(t); // t is deleted and assigned 0}
at
h(...) {
leanup(t); 8

}return t;}While su�
ient, it's a bit ugly. As it turns out, we
an simplify the implementation with the use of astd::auto_ptr-like type. The sour
e
ode distributed with this paper
ontains a
leanup_ptr
lass tem-plate, whi
h is used like a std::auto_ptr but is intended spe
i�
ally for handling
ases
overed by our
leanupframework. An example:
leanup_ptr<T>
(new T);if(operation fails) return error or throw; //
 will
lean up the obje
treturn
.release(); // transfer ownership of obje
t to
allerWith that simple me
hanism in pla
e we
an simplify
leanup during ex
eption/error handling signi�
antlyand, in our
ase, provide some leak-safety guarantees whi
h simply
ouldn't be made without this, or a similar,feature.3 Wrapping upThe previous se
tion showed us everything we need to know to apply type-spe
i�

leanup rules using a trivialframework. Let's leave with a few parting notes...3.1 Re-examining the motivating problemLet's take another look at the motivating problem des
ribed at the top of this arti
le, and show how our
leanupframework approa
h allows the algorithm to safely re
over from errors, instead of �sometimes� admitting a leak.In that
ase, we had the following fun
tion:template <typename T> T *
reate_obje
t(
onst data_sour
e & sr
);After the
reation of the
leanup framework it
an predi
tably, reliably destroy nested obje
ts of near-arbitrarytypes. It now performs the following operations:1. Try to
reate a T obje
t. If that fails, we
an safely bail out with no
han
e of a leak.2. Pass sr
 to the new obje
t so the obje
t
an populate itself.3. If the operation su

eeds, return the new obje
t, else...4. The obje
t might be in an unde�ned state:
leanup(obj)Using the
leanup_ptr<> mentioned above, the error-handling
ode be
omes trivial to write.3.2 Simplifying
reation of
leanup fun
tors or
leanup_traitsOne feature whi
h would
ertainly simplify using the library is to allow the
reation of
leanup fun
tor spe
ializa-tions, or partial spe
ializations, via ma
ros. The libs11n
ode uses this approa
h to
reate partial spe
ializationsfor the standard
ontainers.3.3 It ain't just for
ontainers...The model shown here works not only for
ontainers. Containers are an important
onsideration, indeed themotivating
onsideration, for the framework, but it
an also be used for other purposes. The original prototypefor this
ode was used to
lean up items from an underlying database-like store. Types whi
h parti
ipatedin the db
alled the
leanup fun
tor from their dtor, passing it their unique db identi�er (instead of theirpointer/referen
e). The fun
tor then removed any data asso
iated with that instan
e of that type from the db.9

3.4 What about
leaning up void pointers and arrays?This arti
le has spe
i�
ally avoided the handling of void pointers and arrays during
leanup be
ause, quitefrankly, i never use them. They are artefa
ts from C, and don't have a pla
e in most modern C++
ode. i amalso not
ertain of the impli
ations of generi
ally freeing a void pointer: should we use free() or delete? Thestd::ve
tor
lass is
ompatible with C arrays and superior in every way (ex
ept that it's a tiny bit larger thana raw array), so there is no reason not to swit
h from arrays to ve
tors.3.5 Ciao!Thanks for taking the time to read this arti
le. :)�� stephan�s11n.netReferen
esReferen
es[CCS2005℄ C++ Coding Standards, Herb Sutter and Andrei Alexandres
u, 2005

10

