Lexical Casting in C++

stephan@s11n.net
August 14, 2005

Abstract

CVS Info: $Id: lexical casting.lyx,v 1.5 2005/05/25 18:19:13 sgbeal Exp $

This paper covers the topic of "lexical casting”: what it is, how it can be used in C++, and some potential
cases for when to use it. It also develops a C++ class which encapsulates lexical cast behaviours. It is aimed
at intermediate-level+ C++ programmers (that is, ++newbie). That said, the software developed in this
paper is suitable for use by new C+-+ users, but such users are recommended to learn a bit about type
conversions, especially implicit type conversions, as they are defined by the ISO C++ standard. (That
said, i personally know embarrassingly little about them, and learn about them more ”the hard way” than
anything else.)

The entire text of this document, and the accompanying source code, are released into the Public Domain.

Any sort of feedback, and suggestions for improving this paper, are welcomed: please email the author
at the address shown above.

Change History:

August 2005: Minor touch-ups and corrections.

31 Dec 2004: Changed the impl of istream™> > again.

28 Dec 2004: Re-implemented istream> > operator.

20 Aug 2004: Minor textual corrections (missing words and such).

19 Aug 2004: Initial release

Contents
1 Introduction 2
1.1 Disclaimer L o e 2
1.2 Background L e 2
1.3 What is Lexical Casting? e 3
1.4 Type requirements: what types can be lexically cast? 0oL 3
1.5 Motivation o e e e e e 3
2 Developing an interface for lexically casting arbitrary types 4
2.1 What C++ provides us with already 4
2.2 An interface and implementation 4
2.3 The obligatory kludge L e 7
2.4 Sample usage e 7
2.5 Eeek! A bugl e 8
2.6 Conclusion L e 8
3 lex_t: a "exical type” 9
3.1 Backing up: class-defined, implicit type conversions 9
3.2 Classinterface L L 10
3.3 Using lex_t o . L 12
3.3.1 Shameless plug: slln L e 13
3.4 Potential uses oL L 14
3.5 Source code for lex_tl e e 14

4 Conclusion 15

1 Introduction

1.1 Disclaimer

i am not a C++ guru, nor have i been formally educated as a software developer (rather, it is a hobby that
accidentally turned into a profession). Thus it is quite possible that this paper contains some misleading or
downright incorrect statements about C++. i would ask any more-enlightened reader to please gently prod me
the proper direction should (s)he find any information here which is misleading or blatantly incorrect.

1.2 Background

Programmers with experience in so-called loosely typed languages, like Perl or PHP, are familiar with language
syntaxes allowing statements like the following:

foo = 17;
foo = 7’177,
foo = ’no, i said seventeen.’’;

17.33;

foo

Many languages, including C++, are strongly typed, and disallow this type of leniency, requiring that the
programmer specify exactly what type he means when he creates a variable, as highlighted here:

int foo = 17;
foo = *’17°’; // ERROR: not an integer, though it looks like one to you and me.
foo = no, i said seventeen’’; // ERROR: not an integer.

17.33; // WARNING: will drop the post-decimal-point part.

foo

While such strong typing is generally a Good Thing in applications, especially in large-scale applications, i
personally sometimes miss the ability to treat a type essentially however i want to. Throughout the rest of this
paper we will discuss how this can be achieved, at least to some level, and how we can generically make use of
this technique in our own C++ code.

Before continuing, let’s just take a quick peek at what’s to come:

typedef std::map<lex_t,lex_t> MapT;
MapT map;

map[4] = "one";

map["one"] = 4;

map[123] = "eat this";

map["123"] = "this was re-set";
map[’x’] = "marks the spot";
map["fred"] = 94.3 * static_cast<double>(map["one"]);

map["fred"] = 10 * static_cast<double>(map['"fred"]);

int myint = map["one"];

Reminder: this is C++, not Perl.

And yes, the above code is perfectly legal and does exactly what it appears to do. Yes, even when compiled
with a C++ compiler.

Some purists are likely to respond that the above code is not in line with common C++ thinking, and denounce
it as "unduly type-unsafe” or "poor style.” Could we live without this type of flexibility in C++7 You bet!
However, this paper will attempt to convince the reader that for some use cases the ability to loosely type
variables can greatly simplify implementation and usage of a particular piece of code.

1.3 What is Lexical Casting?

Let’s take a moment to examine the phrase "lexical casting.”

We know, from our experience with C++, what casting is. In short, it is the ability to convert an object of
one type to an object of another type. C++ allows a variety of techniques for casting types, both via explicit
(user-specified) and implicit (compiler-determined) type conversions. One could argue that implicit conversions
are inherently explicit, as class designers can manipulate their classes in order to tell the compiler what types
of conversions are and are not allowed, but here we mean implicit to mean cases where users of a class need
not tell the compiler that they want a specific type conversion (i.e., cast) to take place.

The word lexical refers to words or, as we know them in C+-+, character strings.

So, lezical casting is:

The ability to cast strings to other data types, and non-string types to strings. (Well, we can also
cast strings to and from each other, but there is little point in doing so except to convert between
different implementations of string-like types, e.g. a (char #) to or from std::string.)

While the term does not, in and of itself, imply any sort of limitation on what can and cannot be lexically cast,
this paper is limited to the lexical casting of so-called “streamable” data types, as defined in the next section.
As we will soon see, limiting ourselves to streamable types is not only a question of practicality, but it is also
not as limited as one might initially think. Consider: all of C++’s built-in data types are streamable, as is
std: :string, and those types cover the majority of data which we would normally want to lexically cast. One
might argue that pointers aren’t generally streamable, but pointers are not types in and of themselves, but are
type qualifiers. That is, a pointer never exists by itself, but is instead applied as a qualifier for a type.

1.4 Type requirements: what types can be lexically cast?

For our purposes, any type meeting the following requirements can be reliably lexically cast:

e It must have complementary istream>> and ostream<< operators. This means that istream>> must
be able to populate an object based on data which its ostream> > counterpart has written. Whether the
operators are member functions or not is irrelevant for our purposes.

e It must be Default Constructable. That is, the following expression must be valid:
T t;

e It must be Assignable to it’s own type. That is, the following expression must be valid:
Tt=TQ;

e While not a strict requirement, it should also have a copy constructor, such that the following expression
is valid:
Tt(TO);

Any type which meets these requirement will, in theory, be lexically castable by the framework we will develop
in this paper. In other words, the framework will cover at least C++’s predefined PODs, plus std: :string. It
will also cover any user-written types which meet these requirements.

There may be other factors which prohibit a type’s use with our framework, one example being the requirement
of having high-precision accuracy in floating-point numbers. (We will cover that point later on.)

1.5 Motivation

The original motivation for this paper, and the software developed through it, came about while working on a
generic database layer for C+-+. Through that work the techniques shown here were applied in order to simplify
the API related to fetching information from and updating to a database. As databases normally work with a
fairly limited set of POD [Plain Old Data] types, lexical conversions are very well-suited for such a task. Rather
than having to implement a handful (or more) of accessor and mutator functions, like getInt (), getDouble(),
getString(), or overloaded variants, we end up with one get () and one set () function, both of which can act
on behalf of all of the basic POD types (indeed, for all lexically castable types) by simply accepting or returning
a lex_t object in place of a "strong” type.

Aside from usage in such a database framework, the lex_t type presented here can, in many cases, act as a
generic replacement for type-specific “assignment proxies”, as presented in detail in Scott Meyers’ classic work,
More Effective C++, Item 30. (If that book isn’t on your bookshelf, next to your computer, in your book bag,
or otherwise in your possession, go buy a copy! If, on the other hand, you don’t have a copy because you have
already memorized the book and gave it to a more needful colleague, then give yourself a big pat on the back!)

2 Developing an interface for lexically casting arbitrary types
In this section we develop a basic interface for performing lexical casts. Our requirements are:

e It must support all types which meet the type requirements listed above.

e It must be client-agnostic. That is, it must not be geared towards usage in any single environment, but
should be generic enough to serve a number of different clients’ needs.

Let’s start...

2.1 What C++ provides us with already

Believe it or not, the STL provides us with everything we need to implement lexical casts in C++. If you don’t
believe that, consider the following snippet:

std::ostringstream os;

int myint = 7;

os << myint; // effectively ’casts” 7 to a string
std::istringstream is (os.str());

std::string mystr;

is >> mystr; // mystr == 7>

The end result is that myint equals 7 and mystr equals ”7”. That is, we have just lexically cast the number 7
to the string 77

We're going to disregard, for the time being, the complications introduced by whitespace characters and the
accuracy of floating-point vis-a-vis this approach. We will cover those in more detail later on.

The above probably shows you nothing you didn’t already know. Assuming one is familiar with the stream-
related parts of the STL, there is nothing outright mysterious about the stringstream classes. However,
writing the above code over and over in an application would get really tedious really quickly. As one of the
most prevalnt traits of programmers - common wisdom says - is laziness, we can assume that most programmers
don’t want to do tedious work, and that includes writing and re-writing code like that shown above. Let’s now
explore how we might shorten the above code to an amount more suitable to... well, to our utter laziness.

2.2 An interface and implementation

Our first step will be to create a pair of functions which act as a convenience interface to using stringstreams.

One immediate problem surfaces: how do we (generically) handle conversion failures? For example, if we try to
cast the string "oh my” to a double, what should happen if it fails? Even more importantly, how do we know
if such a conversion fails?

This second question is trickier than it sounds, and we’re going to jump right into the answer without going
into detail about why it is so deceptively tricky:

We can’t know with 100% certainty.

That sounds a bit harsh, so i feel compelled to qualify that with:

At least, not from a generic interface.

Even with that qualification, that might not be 100% technically true, but i will continue to write as if it is
true. :)

Let’s consider this example:

std::string s = ’oh my’’;
std::istringstream is(s);
double d;

is >> d;
Before you accuse me of lying when i assert we cannot know if the conversion failed, let’s see what we can check:
if(! is.good()) { ... error ...

To be honest, though, this tells us very little. It tells us that there was a stream-level error, which can
theoretically be caused by any number of stream-related problems, like a device-level failure in the middle of a
read. Remember that the streams we’re using need not be stringstreams - they might be ifstreams. (True
enough: we are explicitely dealing with stringstreams here, which are highly unlikely to fail during i/o, but
let’s think generically for the time being and assume that we are reading from and writing to arbitrary streams
which might fail.)

So, for now i will continue to assert that, for all practical purposes, we cannot know if such a conversion fails.

"But wait” you say, "what about this:”
if(0.0==4) { ... error ... }

Nice try, but no prize: 0.0 might be a valid value for any given conversion from a string to a double.

Before going any further, let’s stress this point:

There is nothing magical about any specific value of a given object of type T which makes it useful
as a general-purpose “error” value for any and all conversions of type T to or from strings.

(Here we will not consider options such as stream operators throwing exceptions on errors. While realistic, this
option opens up a whole other can of worms, the discussion of which is well beyond the scope of this document.)

Don’t get hung up on the idea that we cannot check for casting errors, though, because there is actually a
fool-proof way to generically determine when a lexical cast fails. We will see that approach in a moment, once
we have laid out our basic convenience interfaces.

Without any further ado, here we will present one possible back-end for lexical casting. Let’s start with the
simpler of the two: conversion of non-strings to strings:

template <typename value_type>
std::string to_string(const value_type & obj)

{
std::ostringstream os;
os << std::fixed; // Very arguable! Discussed later on.
os << obj;
return os.str();
}

That should be pretty straightforward: the function lexically casts obj to its string representation. For most
purposes we can assume that this function essentially “can’t fail”. That is, an ostringstream is essentially a
container, and container-level insertions don’t, for practical purposes, fail.

The converse, casting from a string to a non-string, is a bit trickier because of error handling. Here we will see
one possible implementation, which has actually worked very well for me over the past couple of years:

template <typename value_type>

value_type from_string(const std::string & str, const value_type & errorVal)

{
std::istringstream is(str);
if (!'is) return errorVal;
value_type foo = value_type();
if (is >> foo) return foo;
return errorVal;

}

Again, this should be pretty straightforward, but let’s take a closer look at the second parameter that from_string()
accepts. Let’s consider the following call:

double d = from_string(*’17.3?, 0.1);

If the above function fails then the passed-in “error value”, 0.1, is returned, otherwise the properly-cast value of
17.3 will be returned. This has several implications:

1. The client specifies what he considers to be an error value. What if 0.1 is a valid value? More specifically
(and more likely), what if there is no known "invalid” value for the type? We’ll answer that in a moment,
as the answer is a bit awkward (but fail-safe).

2. The "error value” may also be interpretted as a “default value”. (This is almost always how my applications
interpret it.) For example, passing ”a string” to from_string() is not going to return a double, and
applications can use the second parameter to mean, "if str is not really a double then let’s use the
default value of 0.1.”

3. Explicitely passing a second argument ensures that clients do not have to type from_string<double>(...),
as standard argument-type deduction can do this job (most of the time, anyway - there are ambiguous
cases where the client must specify the type).

Before continuing, let’s answer the first point’s question:

To solve this problem we simply need to make the following observation about lexical casts:

A lexical cast failure will always fail in the same way. Or, more correctly, it cannot succeed twice
in different ways.

Why is this so? Let’s take a close look:

If we try to convert a given string to a another type twice, and it converts differently both times, then we know
that one or both of the conversions failed. Thus, we can deduce that the conversion as a whole failed. i can
almost year you say, "what the foo is he going on about?!?!” Let’s show an example, which should make it clear:

std::string dstr = not a number’’;
double d = from_string(dstr, 0.0); // d == 0.0
if(0.0 == d) {
d = from_string(dstr, 1.0) // d == 1.0
if(1.0 ==4) {

// A real error, as deduction tells us that dstr
// could not possibly have been successfully cast
// to both 0.0 and 1.0.

We know that, according to the rules of reading a double from an istream, lexically casting dstr to d will
fail. This means that we will get back the second from_string() parameter as our return result for both calls
to from_string(). We also know that if dstr fails to cast to a double, it will also fail to cast to any other
double. Thus we can check against two cases, and if the cast returns our different “error values” twice then
we know that the failure is "real”, and that dstr was not a double (in string format) to begin with. If, on the
other hand, the first call succeeds and the second call fails, then we know (through deduction) that 0.0 was the
actual value stored in dstr.

Got that?

Note that while the above example uses doubles, deduction implies that this property holds true for all lexically-
castable types.

Is that a tedious way to check for an error? You betchya! However:

e My own use of this interface has been such that i generally interpret “error value” as “default value”. For
example, "if option FOO is not set in the application’s configuration data, or is set to an invalid value,
let’s use some default, known-good value instead.” This has served my purposes well for 99% of use cases.

e i believe this approach to be client-agnostic enough to be useful for a wide variety of cases.

e Imposing exception-handling conventions for a failure is not only disconcerting, but would be, in my
opinion, downright WRONG, as the to/from_string() functions are too generic to really know what an
error is, and therefore cannot claim to know when they should or should not throw an exception.

e i believe double-checking to be only 100% reliable way to generically check for a string-to-T conversion
failure. (Remember that T-to-string conversions essentially cannot fail.)

That concludes the introduction to our implementation, with one minor exception...

2.3 The obligatory kludge

Before we wrap up our interface and call it "frozen”, we will throw in a couple of quasi-bogus (i.e., arguable)
additions. The functions shown above have a problem with lexically casting strings to or from strings. Why
would we want to do that? Ideally, we wouldn’t, but our interface is designed such that it doesn’t really care
what type we pass to it, as long as a stream can be used to convert the value. So, to ease client-side use and to
keep us from unduly (and arbitrarily) having to modify stream flags (like ios_base: :skipws), we will provide
the following overloads:

std::string from_string(const std::string & str, const std::string &) { return str;

}
std::string from_string(const char *str, const char *) { return str; }
std::string to_string(const char *str) { return str; }

std::string to_string(const std::string & str) { return str; }

The reasons for and implications of these additions should be apparent, so we won’t dwell on them here.

It might be interesting to note that we removed the argument names from the second argument to from_string().
The reasoning is three-fold: first off, some compilers will complain about unused named arguments. Secondly,
we do this to stress that those arguments are not used by those functions: they exist only for compatibility
with the basic interface, to keep clients from having to know when they’re actually casting a string to a string
(" What!?!?” Yes, this can and does happen in generic algorithms). Lastly, these additions to the API have
proven to be useful in generic algorithms which use these functions for, e.g., converting a std: :1ist<X> to or
from a std::list<std::string> (e.g., for serialization purposes).

2.4 Sample usage

Now that we have an implementation for handling lexical casts, let’s see what it looks like in client code. Let’s
first look at from_string():

std::string s = ’17”’;

double d = from_string(s, 0.0); // d == 17.0

std::string s2 = from_string(s, ’’doh!”); // s2 == 7’17

int i = from_string<int>(s, 0); // i == 17. See below.

bool b = from_string<bool>(s, false); // b == true. See below

std::string longstr = ’’this is a long string’’;

double d2 = from_string(longstr, 0.0); // d2 == 0.0

std::string s3 = from_string(longstr, std::string()); // == ’’this is a long string”

In the int and bool conversions we explicitely provide the templatized type to avoid an ambiguity, because 0
is a valid value for a variety of built-in types, such as int, bool, and char. In other words, it is not practical
to expect the compiler to inherently know what type the number 0 should represent, so we help it out here by
being explicit.

Now let’s take a look at using to_string():

int i = 73

—= 27

std::string si = to_string<int>(i); // si =

// =777 <int> may or may not be required here, depending on the compiler
double d = 7.7;

std::string sd = to_string(d); // sd == »7.7”

// =~~~ again, <double> may or may not be required.

So far, so good.

We can see here that checking for a failure in to_string() is easy, compared to from_string(): such operations
essentially never fail. But keep in mind: while that property holds for C++’s built-in types, it may or may not
apply to arbitrary user-defined types!

2.5 Eeek! A bug!

There is actually one glaring problem in this implementation: casting floating-point values, such as doubles,
may not do what is expected. Floating-point numbers are not 100% accurately handled by the above code once
the precision gets beyond six digits (or so - the accuracy is almost certainly compiler- or STL-implementation
dependent).

Generically solving this problem is left as a dreaded exercise for the reader (i’ve always wanted to write that).

2.6 Conclusion

We have written a generic interface for lexically casting and have shown that it does what we set out to do.
This interface is, in and of itself, useful in a variety of cases, and i have personally used it in several projects for
a couple of years. Thus, we won’t harp on the point that it works, nor will we dwell on the cases where it is (or
is not) useful. Despite its generic utility, this interface can get slightly tedious to use at times. The rest of this
paper will be spent trying to hide this interface from client code, wrapping it in a more generic, easier-to-use
interface.

Now go re-fill your coffee (or your tea, if that’s your thing. Or your beer.) and then let’s continue our search
for a more appealing client-side interface to lexical casting

3 lex_t: a "lexical type”

In the previous sections we developed our basic interface for lexical casting. In this section we will develop a
class which simplifies the process of adding lexical casting to our client-side code.

Every class needs a name before it can be coded, so we’ll go ahead and make that decision up front. Because
the class is intended to lexically cast types to and from strings, we will call it a "lexical type”, or lex_t for
short. Another good name might be variant_t, but we’ll go ahead and stick with lex_t, primarily because i
already have so much code with that name in it that i have a hard time changing the name ;).

The requirements for our type are essentially the same as for the basic to/from_string() interface, with these
additions:

e We must be able to assign values of lexically castable types to a lex_t. e.g., the following must work as
expected:
lex_t lex = 27;

e We must be able to assign lex_t objects to variables of supported types. e.g., the following must work as
expected:
int foo = lex;

e [t must provide a way for the user to explicitely state the type to cast to, to get around ambiguous cases
(as shown earlier). Note that for casting from other types we do not need an ”ambiguity buster”, as we
already have C++’s various cast operators to do this for us.

3.1 Backing up: class-defined, implicit type conversions

Let’s briefly cover one of C++’s features: the ability to define arbitrary type conversion operators for a class.
An an example, assume we have the following member functions in a class:

operator bool() const { ... }
operator double() const { ... 1}

There a number of very valid reasons to not include such conversions in a class, especially conversion for for
bool, but we won’t go into detail about them here. What we will say is: for what we are about to do, this type
of conversion is exactly what we want. Thus we will shamefully abuse this feature. What we won’t do is write
such an operator for every type we want to convert to. What we will do is take advantage of C++’s template
facilities and use the following single function (you may want to sit down first...):

template <typename T>

operator T() const { ... }

Doh!
The implications of that function are pretty far-reaching, and it is not recommended for general use.

To be honest, until a few days before writing this paper, i didn’t know C+-+ would let us get away with this.
It does, or at least my compiler allows it.

Now there are people out there (i'm one of them) who will shudder in discomfort when seeing the above code.
Consider: it tells the compiler that our type can be implicitely converted to any other type. Dangerous?
Definately so. We will console ourselves with the knowledge that the interface is documented well enough, and
is easy enough to use, that such conversions “shouldn’t” Cause Grief, at least not in "common sense” cases. Let’s
not dwell on the downright underhandedness of the above code, and try to continue without letting that weigh
on our minds too much.

Aside from conversion from a given type, we need to be able to convert fo a given type, an operation we can
summarize with one function:

template <typename T>
lex_t & operator=(const T &) { ... }

Again, this is potentially a spawning ground for Grief, but we will accept this possibility for the reasons given
above.

Given the above two functions, we now have the majority of what we need to wrap to/from_string() in a class
interface. We'll need to clean it up a bit, so let’s get going. Before we do, though, let us stress the following
point:

The above type conversion operators are not at all well-suited for general purpose use in arbitrary
classes! Please be aware that by relying on implicit conversions of any type (no pun intended), you
are leaving yourself open to seeing some, shall we say, “surprising” behaviour in your software!

3.2 Class interface

We'll jump the gun a bit here and take a look at a class which should achieve our design requirements. Afterwards
we will discuss some of the implications of the interface.

Because the implementations is so small and straightforward, we will go ahead and show the whole class in one
sitting, as opposed to breaking it down into example-sized chunks. Don’t dwell too long on the implementation
details here: focus only on the interface. We could probably debate the merits and non-merits of the implemen-
tation all day long and never reach an all-around satisfactory agreement. (That said, readers who have definate
ideas about improvements are encouraged to get in touch with me!)

Our class is pasted in below, reformatted a bit for presentation here. The calls to our previously-written
to/from_string() functions are highlighted in blue.

class lex_t {

private:

std::string m_data; // stores our raw data

public:
lex_t(O){}
“lex_t() {}

// Standard copy ctor:
lex_t(const lex_t & rhs) {

this->m_data = rhs.m_data;

}
// An efficiency overload:
lex_t(const std::string & v) : m_data(v) {}

// Standard assignment operator:
inline lex_t & operator=(const lex_t & rhs) {
if (&rhs != this) this->m_data = rhs.m_data;
return *this;
}
// Generic implicit conversion ctor:
template <typename FromT>
lex_t(const FromT & f) : m_data(to_string(£)) {3}
// Casts this object’s value to a ToType, returning dflt
// if the conversion fails:
template <typename ToType>
ToType cast_to(const ToType & dflt = ToType()) comnst {
return from_string(this->m_data, dflt);
}
// Provide implicit conversions for lex_t objects
// in rvalue contexts (i.e., on the right-hand side
// of an expression):
template <typename ToType>

inline operator ToType() comst {

10

return this->cast_to(ToType());
}
// Provide implicit conversion for lex_t objects
// used in lvalue contexts (i.e., being assigned to).
template <typename ToType>
inline lex_t & operator=(const ToType & f) {

this->m_data = to_string(f);
return *this;

}
// return the raw data as a string:
inline std::string & str() { return this->m_data; }
inline const std::string & str() const { return this->m_data; }
// Implement operator< so we can use this type in
// std::map<> and the like:
inline bool operator<(const lex_t & rhs) comnst {
return this->str() < rhs.str();
}
inline bool operator>(const lex_t & rhs) const {
return this->str() > rhs.str();
}
inline bool operator==(const lex_t & rhs) const {
return this->str() == rhs.str();
}
// An efficiency overload:
inline operator std::string () const { return this->str(); }
// Another efficiency overload:

inline operator const char * () const { return this->str().c_str(Q; }

}; // end lex_t class

Notice how simple the overall class implementation is: none of the functions are longer than two lines of code
(well, three if we count ”if (...)” as a line by itself).

Because lex_t is essentially a std::string proxy, implementing the ostream operator is trivial:

// Sends 1lt.str() to the given ostream:

inline std::ostream & operator<<(std::ostream & os, const lex_t & 1t) {

return os << lt.str();

Interestingly, it is not so straightforward for istream:

// Populates 1t from the given istream.

// Note that this implementation seems to be extremely dubious,
// but actually does exactly what we need, as discussed below.
inline std::istream &

operator>>(std::istream & is, lex_t & 1t) {

/* %Kk

Attempt #1:

is >> 1t.str(); // depends on skipws.

11

*okk ok /
VAL T L)

Attempt #2:
while(std::getline(is, 1lt.str()).good());

Eeek! strips newlines!

*kkk/

/®*kx

Attempt #3:
char c;

while(is.get(c).good()) { 1lt.str() += c; }

WIF??? On my box this does nothing!

*xxk [

VALIZY

Attempt #4:

std::getline(is, 1lt.str(), ’\v’); // UGLY, EVIL hack!

The \v char ("vertical tab") is an ugly hack: it is simply a char from the ascii chart
which never shows up in text. At least, i hope it doesn’t. AFAIK, \v was historically
used on old line printers and some ancient terminals, but i’ve never seen it actually
used. Unicode maps 0-255 to the ascii set, so this shouldn’t be a problem for Unicode
either.

This hack is likely to work for most data, but is definately worth -2 Style Points (or
more) .

Kok kokok /

/% kkok

Finally, a hack which essentially does what i want:

(Many thanks to Marc Duerner for this idea.)

*okkokk /

return std::getline(is, lt.str(), \

static_cast<std::istream::char_type>(std::istream::traits_type::eof()));

(Side note: the source code available from the URL in section 3.5 might be more up-to-date than that shown here.)

Justifying the istream> > operator:

In practice, lex_t is normally used in containers, and not with file streams. Its istream operator
is designed to read in all data, as conventions imply that it is really reading from a stringstream.
One partially satisfying solution to the istream-related problem might be to replace the i/ostream
operators with operators accepting only stringstreams.

The istream design issues notwithstanding, let’s now show how we can use this type, discussing its implications
as we go...

3.3 Using lex_t

Using lex_t in client code is anything but difficult. We use it just like any other type, and allow the compiler
to arrange the type conversions for us (or most of them, anyway). Note that we have the cast_to() member
function to give us explicit control over conversions when we need it.

Here’s how it works:

lex_t lex = 17;

int i = lex; // i == 17

std::string s = lex; // s == 2177
lex = a string’’;

std::cout << ”’1ex=""<<lex<<std::endl;

12

This can’t be C++ code, can it? It looks too much like Perl!

It is indeed C++. If you think the above looks odd, though, let’s take another look at the sneak-preview code
we showed at the beginning of this paper:

typedef std::map<lex_t,lex_t> MapT;
MapT map;
map[4] = "one";

map["one"] = 4;

map[123] = "eat this";

map["123"] = "this was re-set";

map[’x’] = "marks the spot";

map["fred"] = 94.3 * static_cast<double>(map["one"]);
map["fred"] = 10 * static_cast<double>(map["fred"]);
int myint = map["one"];

lex_t envvar = ’USER’’;

std::cout << envvar <<’="<< ::getenv(envvar) << std::endl;

Doh! Now it really starts to look like Perl code!

There are cases where implicit type conversions probably won’t do what we might expect them to, but clients
always have the option of using lex_t::cast_to() to force a conversion to a specific type, or can use the
standard static_cast<T>() when passing an object to, e.g., lex_t’s template-based constructor or assignment
operator. Those options give us all the flexibility we need for lex_t-to/from-T conversions, and also provide us
with an escape route if an implicit conversion backfires on us somehow (which, given the all-purpose nature of
the template-based ctor, assignment operator, and type-conversion operator, is quite likely to happen sooner or
later!).

Note that we have avoided using any doubles as map keys in the above code. The reason for that is something
we mentioned before: the precision of doubles cannot, as far as i know, be 100% reliably, generically controlled
via the interface proposed here (please correct me if i am mistaken!). Let’s take a look at an example:

map[®’1.0°] = ’foo’’?;
map[1.0] = 17;

When we iterate over map we will probably find that there are two entries instead of one. The stringified key
for 1.0 (as a double) is probably something like ”1.000000”, whereas ”1.0” (as a string) will be stored literally as
”1.0”. Thus, using doubles as keys in such a map is discouraged. Using double values is also not recommended
if precision is an issue (unless, of course, the reader has accepted the above-mentioned dreaded exercise and
fixed that problem!).

3.3.1 Shameless plug: slln

If we use libslln (http://slln.net), saving and loading the above map is trivial:

slinlite::save(map, std::cout); // pass it your favourite stream or a filename
To load it is also trivial:

MapT * map = sllinlite::load_serializable<MapT>(instream); // or pass a filename

It can’t get much simpler than that!

The point is this: if you're wasting your precious coding hours by trying to save your data, STOP IT! Serializing
data in C++ absolutely doesn’t get any simpler than it does when using s1ln! For examples’ sake, the map
demonstrated above might end up looking like the following:

13

<!DOCTYPE slin::simplexml>

<data_node slln_class="map">

<pair slln_class="pair'">

<first slin_class="lex_t" v="123" />
<second slln_class="lex_t" v="this was re-set" />

</pair>
<pair slln_class="pair'">

<first slln_class="lex_t" v="4" />
<second slin_class="lex_t" v="one" />

</pair>
<pair slln_class="pair">

<first slln_class="lex_t" v="fred" />
<second slin_class="lex_t" v="3772.000000" />

</pair>

<pair slln_class="pair'">

<first slin_class="lex_t" v="one" />
<second slin_class="lex_t" v="4" />

</pair>
<pair slln_class="pair'">

<first slin_class="lex_t" v="x" />
<second slin_class="lex_t" v="marks the spot" />

</pair>

</data_node>

The exact data format is unimportant: slln is data-format agnostic and currently (as of this writing, version
1.0.0) supports 7(1!!) different data flavours.

Utilizing libs11n, saving and loading such types is child’s play: adding such support to an application is a
matter of a couple minutes of work, as opposed to several hours (or even days) of work.

3.4

Potential uses

Now that we have lex_t, what are we going to do with it? Here is a partial list of potential uses:

3.5

Abstract symbol tables. The demonstrated map, e.g., would be suitable for a simple symbol table.
Fetching data from or updating data in database record objects.

Converting numeric data entered via, e.g., a string-based Ul widget, or a command-line or console-style
interface. One example which immediately comes to mind is for easily converting arguments passed in to
an application’s main() function:

int foo = lex_t(argv[il);

Conversely, converting numeric information to strings for insertion into a widget which requires strings.

Converting lexer-parsed strings to various types. (That is, "lex” as in the classic text-parsing tool, not as
in 7lexical type.”)

Use a std: :map, as shown above, to store application configuration information.

Source code for lex_t

The latest “official” source code for the lex_t type can be obtained via the s11n web site:

http://slin.net/download/#lex_t

14

4 Conclusion

If this paper has greatly offended your sense of strongly-typed code by presenting this paper, be consoled by
the fact that EOF is very near...

We’ve covered quite a bit of ground here. (i set out to write 4 or 5 pages, and suddenly it’s well over 10 :/.) We
have learned what lexical casting is. We have shown that lexical casting works sufficiently well for a number of
use cases. We have shown two possible approaches to adding it to your C++ toolbox. And, finally, we touched
on ideas for some potential uses.

Now, if your gut is not still wrenching from the Perl-ness of the above example code, go and give it a try!
Creative coders will certainly find uses for lexical casting in their C++ projects!

Thanks for taking the time to read this paper. i sincerely hope that you have learned something from it, or
have at least enjoyed reading it.

Any bug fixes or enhancements to the lex_t source code or API documentation, or for this document, are of
course welcomed, as is feedback of any constructive sort (regardless of whether it is positive or not). Blatant
flame-mails will be lexically cast to a double, which, as we have seen here, will result in useless data. :)

Happy hacking,

stephan beal (stephan@s11n.net)
19 August, 2004

15

