
s11nan Objet Serialization Framework for C++Version 1.2.xs11n-devel�lists.soureforge.net - http://s11n.netNovember 25, 2005AbstratThis doument desribes s11n (and �s11nlite�), an objet serialization framework for C++, version 1.2.x.It serves as a supplement to the s11n API doumentation and soure ode, and is not a standalone treatmentof the entire s11n library. Muh of this doumentation an be onsidered �required reading� for those wantingto understand s11n's features, espeially its advaned ones.s11nlite, introdued in s11n version 0.7.0, simpli�es the s11n interfae, providing the features that �mostlients need� for saving and loading arbitrary objets. It also provides a referene implementation forimplementing similar lient-side interfaes. The author will go so far as to suggest, with unharateristinon-humbleness, that s11nlite's interfae ushers in the easiest-to-use, least lient-intrusive, most �exiblegeneral-purpose objet serialization library ever reated for C++.Users who wish to understand s11n are strongly enouraged to learn s11nlite before looking into therest of the library, as they will then be in a good position to understand the underlying arhiteture andframework, whih is signi�antly more abstrat and detailed than s11nlite lets on. Users who think theyknow everything about serialization, lass templates and lassloaders are still enouraged to give s11nlite atry : they might just �nd that it's just too easy to not use!ACHTUNG #1: this is a �live� doument overing an in-development software library. Ergo...it may very well ontain some misleading or blatantly inorret information! Please help us improve thedoumentation by sumbitting your suggestions to our mailing list!ACHTUNG#2: the HTML version of this doument is KNOWNTO HAVE ERRORS introduedby the LYX-to-HTML onversion proess, suh as arbitrarily missing text. Please onsider reading a LYX orPDF opy instead of an HTML opy. HTML versions are released primarily as a onveniene for web-rawlingrobots, not all of whih an read PDF.Doument CVS version info:$Id: s11n.lyx,v 1.18 2005/11/25 00:04:03 sgbeal Exp $Maintainer: stephan�s11n.net (list: s11n-devel�lists.soureforge.net)Contents1 Preliminaries 71.1 Liense . 71.2 Dislaimers . 71.3 Feedbak . 81.4 Credits . 92 Introdution 102.1 Sope of this doument . 112.2 s11n's Dream . 112.3 Main features . 122.4 Notable Caveats (IMPORTANT) . 142.5 WTF is s11nlite? . 152.5.1 Repeated warning: learn s11nlite �rst! . 152.6 Getting and installing s11n . 162.6.1 Building under GNU systems . 162.6.2 Building under Windows and �other� environments . 161

2.6.3 Compiling and linking s11n lient appliations . 162.6.4 Building under Cygwin, Ma OS/X (Darwin), et. 172.7 Version Compatibility . 172.8 Optional supplemental libraries . 173 Main di�erenes between 1.0.x and 1.2.x 183.1 s11n mantra hange . 183.2 Code onsolidation and removal . 183.3 Fatory ode reimplemented . 183.4 node_traits<> hanges, s11n::data_node replaed with s11n::s11n_node 193.5 New header onventions, faster ompile times . 193.6 Fething lass names of Serializables . 203.7 Client-extendable s11nlite . 203.8 ~/.s11nlite on�g �le removed . 213.9 Exeptions onventions . 214 Core onepts 214.1 Terms and De�nitions . 214.2 The O�ial Grossly Oversimpli�ed Overview of the s11n arhiteture 244.3 Proess Overview . 264.3.1 Serialization . 264.3.2 Deserialization . 264.4 Node Names and Property Key naming onventions (IMPORTANT!) 274.5 Overview of things to understand about s11n . 274.6 Notes on error/suess values (i.e., justifying the bool) . 284.7 s11n and Patterns . 294.7.1 The ore . 294.7.2 Classloader . 294.7.3 Proxies . 294.7.4 i/o . 294.7.5 s11nlite . 295 Serializable Interfaes: overview and onventions 295.1 Serialize Operator onventions . 305.2 Deserialize Operator onventions . 305.3 Data Node lass names (IMPORTANT!) . 305.3.1 Example of setting a node's lass name . 315.3.2 Using loal library support for lass_name() . 325.4 Cooperating with other Serializable interfaes . 325.5 Member template funtions as serialization operators . 336 Type Traits 336.1 s11n::node_traits<NodeType> . 336.2 s11n::s11n_traits<SerializableType> . 346.2.1 leanup_funtor . 346.3 type_traits<T> . 357 Five-minute intro: PODs and STL ontainers 357.1 #inlude ... 367.2 Saving . 367.3 Loading . 367.4 Now the really easy way: miro_api<> . 372

8 How to turn JoeAverageClass into a Serializable... 378.1 Create a Serializable lass . 388.2 Speifying ustom Serializable interfaes for InterfaeTypes . 388.3 Speifying Serializer Proxy funtors . 399 How to turn JoeNonAverageClass into a Serializable... 409.1 JoeAverageClass<> lass template . 419.1.1 A leanup funtor . 4110 Doing things with Serializables 4210.1 Setting �simple� properties . 4210.2 Getting property values . 4210.2.1 Simple property error heking . 4310.2.2 Saving ustom Streamable Types . 4310.3 Finding or adding hild nodes to a node . 4310.4 Serializing Streamable Containers . 4410.4.1 Trik: �asting� list or map types . 4410.5 De/serializing Serializable objets . 4510.5.1 Individual Serializable objets . 4510.5.2 Containers of Serializables . 4610.5.3 �Brute fore� deserialization . 4611 Walk-throughs: imlementing Serializable lasses 4711.1 Sample #1: Read this before trying to ode a Serializable! . 4711.1.1 The data . 4711.1.2 The #inludes . 4711.1.3 The serialize operator . 4811.1.4 The deserialize operator . 4811.1.5 Serializable/proxy registration . 4911.1.6 Done! Your objet is now a Serializable Type! . 4911.2 Gary's ode . 4911.2.1 Gary's Revelation . 5012 s11n registration & �supermaros� (IMPORTANT) 5212.1 �Supermaros� . 5212.2 General: Interfae Types . 5312.3 Choosing lass names when registering . 5412.4 Registering Interfae Types supporting serialization operators . 5412.5 Registering types whih implement a ustom Serializable interfae 5412.6 Registering Serializable Proxies . 5512.7 Where to invoke registration (IMPORTANT) . 5612.7.1 Hand-implementing the maro ode (IMPORTANT) . 5613 Proxies, funtors and algorithms 5613.1 Commonly-used Proxies . 5713.1.1 I/OStreamable types: s11n::streamable_type_serialization_proxy 5713.1.2 Arbitrary list/vetor types: s11n::list::list_serializable_proxy 5713.1.3 Streamable maps: s11n::map::streamable_map_serializable_proxy 5813.1.4 Arbitrary maps: s11n::map_serializable_proxy . 5813.1.5 Arbitrary pairs: s11n::map::pair_serializable_proxy 5813.2 Commonly-used algorithms, funtors and helpers . 5813.3 When proxies aren't desired . 5813.4 Funtor tags . 593

14 Data Formats (Serializers) 5914.1 General onventions . 6014.1.1 File extensions . 6014.1.2 Indentation . 6014.1.3 Entity translation . 6014.1.4 Magi Cookies . 6114.2 Overview of available Serializers . 6114.2.1 ompat (aka, 51191011) . 6214.2.2 expatxml . 6214.2.3 funtxt (aka, SerialTree 1) . 6314.2.4 funxml (aka, SerialTree XML) . 6314.2.5 parens . 6414.2.6 simplexml . 6414.2.7 wesnoth . 6514.3 Triks . 6514.3.1 Using a spei� Serializer . 6514.3.2 Seleting a Serializer lass in s11nlite . 6614.3.3 Multiplexing Serializers . 6614.4 Internals: �ex's role in s11n . 6615 lass_name() and friends 6715.1 node_traits<T>::lass_name() . 6715.2 s11n_traits<T>::lass_name(onst T *) . 6815.3 Class name of �unknown� . 6816 Exeptions onventions 6916.1 The library throws when... 6916.2 Throwing from lient-side de/ser operations . 7016.3 Errors and SerT * deserialize<NodeT,SerT>(onst NodeT &) 7116.4 Exeptions and �external modules� . 7116.5 Spei� guarantees . 7216.6 Making your Serializables exeption-safe . 7217 SAM: Serialization API Marshaling layer 7317.1 The SAM layer & interfae . 7417.2 SAM's plae in the API alling hain (and other important notes) 7517.2.1 More about SAM<X*> . 7517.3 Historial hanges . 7518 s11nlite spei�s 7618.1 Why use s11nlite? . 7618.2 lient_api<NodeType> . 7618.3 File formats . 7718.4 Simple on�g �les . 7718.5 miro_api<SerializableType> . 7819 Memory management and objet relationships 7819.1 Data nodes . 7819.2 Containers of pointers . 7919.3 Cleaning up before deserialization . 8019.4 Cleaning up after failed deserialization . 804

19.4.1 Understanding the problem . 8019.4.2 Aomodating the problem, approah 1 (don't do this!) 8119.4.3 Aomodating the problem, approah 2 (do this instead!) 8119.5 Understanding �serialization ownership� . 8119.5.1 The basi ase: objets own their own resoures . 8219.5.2 Serializing pointers to data we don't own . 8219.5.3 Two-way parent/hild relationships . 8420 Using plugins 8420.1 Building plugins support . 8420.2 Win32 Ahtung . 8420.3 The API . 8520.4 Basi Usage . 8521 s11n-related utilities 8621.1 s11nonvert . 8621.2 s11nbrowser . 8722 Misellaneous features and triks 8722.1 Saving non-Serializables . 8722.2 Saving appliation-wide state and Singletons . 8822.3 Saving lib state plus arbitrary lient-spei�ed state . 8922.4 �Casting� Serializables with s11n_ast() . 9022.5 Cloning Serializables . 9022.6 Half-intrusive proxying and useless friends . 9022.7 zlib & bz2lib support . 9122.8 Using multiple data formats (Serializers) . 9122.9 Sharing Serializable data via the system lipboard . 9222.10Containers of onst objets . 9222.11Versioning of s11n data . 9222.12Splitting up your output . 9322.13Improving ompile times . 9422.14Know when you don't need to register a type to serialize it . 9422.14.1Containers of Streamable types . 9422.14.2Algos whih don't need the s11n ore API . 9523 Misellaneous aveats, gothas, and some things worth knowing 9523.1 Serializing lass templates . 9523.2 Cyles and graphs . 9523.3 Thread Safety . 9623.4 Polymorphi types and template parameters . 9623.5 Absolute No-no's (Worst Praties) for s11n[lite℄ lient ode . 9723.5.1 Do not hange the name of a passed-in data node! . 9723.5.2 Do not use a single Data Node for multiple purposes! . 9823.5.3 Do not re-assign a referene returned by s11n::reate_hild()! 9823.5.4 Do not use Serializers to implement lassial i/ostream operator funtionality! 9923.5.5 Do not register a type as its own proxy! . 9924 Funtional serialization 9924.1 #inlude ... 9924.2 Example: serialize via std::for_eah() . 9924.3 Composing ustom algorithms from funtors . 10124.4 Non-default-onstruted proxies . 1015

25 Understanding the osts of deploying s11n 10225.1 Learning urve . 10225.2 Intrusivity (or not) . 10325.3 Compilation osts . 10325.4 Memory/RAM osts . 10425.5 Runtime speed: s11n and the �Big O Notation� . 10525.6 Code maintenane osts . 10625.7 Money . 10626 Common problems 10726.1 Satan speaks through the onsole during ompilation . 10726.2 Containers serialize, but fail to deserialize . 10826.3 Abstrat Interfae Types for Serializables . 10927 Evangelism 10927.1 Pointer/referene transpareny for Serializables in the ore API 10927.2 Container-based algos whih are pointer/referene-neutral . 10927.3 �Casting� between �similar� types . 11128 Comparing s11n and Boost::serialization 11228.1 Cans and annots . 11228.2 Compiler and platform portability . 11328.3 Arhives vs Data Nodes . 11328.4 Non-intrusivity . 11428.5 Serialization of pointers . 11428.6 Data Versioning . 11428.7 API ease of use . 11628.8 Serialization Traits . 11628.9 E�ieny . 11728.10The interesting part is... 11728.11In losing: s11n.net and Boost.org . 11829 Soure tree innards 11929.1 Build tree struture . 12029.2 Header �le weirdness . 12029.3 Generated �les . 12129.4 Plugins . 12130 In Hindsight... 12130.1 The name �Data Node� . 12230.2 Patterns, formality, et. 12230.3 Exeptions . 12230.4 Build tree and ode layout onsisteny . 12231 Is this the end? 123Referenes 126
6

1 Preliminaries1.1 Liense"You annot guaranty freedom of speeh and enfore opyright law."Ian Clarke�This [doument℄ is enrypted with ROT26 enoding. Deoding it is in violation of the DigitalMillennium Copyright At.�Anonymous Software DeveloperThe library desribed herein, and this doumentation, are released into the Publi Domain. Some exeptionallibrary ode may fall under other lienses suh as BSD or MIT-style, as desribed in the README �le andtheir soure �les.All soure ode in this projet has been ustom-implemented, in whih ase it is Publi Domain, or usessoures/lasses/libraries whih fall under LGPL, BSD, or other relatively non-restritive lienses. It ontainsno GPL ode, despite its �logial inheritane� from the GPL'd libFunUtil. Soure �les whih do not fall intothe Publi Domain are prominently marked as suh, and in absolutely no ases does this projet use lienseswhih modify the liense of ode linked against it.To be perfetly honest, i prefer, instead of Publi Domain, the phrase Do As You Damned Well Please. That'sexatly how i feel about sharing soure ode.Whatever the liense, however, i will request that if you redistribute your own libraries based o� of this ode,please do not use the same installed binary/library/header �lenames. For example, if you redistribute libs11n,please do not install the library as libs11n.so, nor the headers under <s11n.net/s11n/...>. Doing so willinherently ompliate ases where both of our opies of s11n are used on the same systems.1.2 Dislaimers�This information provided free of harge for those willing to aept it. Others who wish to bespoon-fed may aquire my servies at the disounted rate of 235 Euro per hour or part thereof.�Anonymous Software DeveloperThe obligatory dislaimers inlude:1. This manual will make no sense whatsoever to most people. It is target at experiened C++ programmers(�intermediate level� and higher), and makes many assumptions about prior C++ knowledge.2. Don't let the size of this manual make you think that using s11n is di�ult! Using s11n (espeiallys11nlite) is simple and straightforward, even for non-guru C++ oders. It also has a number of �poweruser� features whih an be exploited by those who truly understand the arhiteture.3. There is admittedly a lot of hype and evangelism in this manual, but i personally believe it to all bejusti�ed.4. s11n is ontinually under development and is onstantly being tweaked. The basi model it is based onhas proven to be inordinately e�etive and low-maintenane sine it was introdued in the QUB projet(qub.soureforge.net) by Rusty �Bozo� Ballinger in the summer of 2000. This implementation re�nes thatmodel, vastly expanding its apabilities.5. This software and doumentation are PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.6. Reading dislaimers makes you go blind. ;)7. Writing them is even worse. :/8. This list of dislaimers might not ontain all the neessary dislaimers.7

And, �nally:This library is developed in my private time and the domain and web site are funded by myself. With that inmind: unless i am kept employed, this projet may �blink out� at any time. That said, this partiular projetholds a speial plae in my heart (obviously, or you wouldn't be seeing this manual and all this ode), so itoften does get a somewhat higher priority than, e.g. dinner or lunh. Should you feel ompelled to ontribute�nanially to this projet, please do so via the donation program hosted by SoureForge and PayPal:https://soureforge.net/donate/index.php?group_id=104450Donations will go toward keeping the web site online and the domain name registered, and potentially to overinternet aess fees. If anyone is interested in providing a grant to this projet, please ontat us diretly. Wewould be thrilled. Of ourse, non-�nanial ontributions, e.g. ode, doumentation, and bug reports, are ofourse also welomed.1.3 Feedbak"Like a Kenny Loggins reord, no one's ever gonna hear ya."Bloodhound GangThe s11n projet's home page is:http://s11n.net/The author is stephan beal (stephan�s11n.net). Feel free to ontat me diretly, but i would ask that questionsabout the library be direted to our development mailing list:s11n-devel�lists.soureforge.netYou do not need to subsribe to the list in order to post there.By all means, please feel free to submit feedbak on this manual and the library: positive, negative, whatever...as long as it's onstrutive it is always happily reeived. While few who know me would say that i am a pedantiperson, i am extremely pedanti when it omes to doumenting software: if you �nd any errors or gaping holesin these dos, please point them out!If this gives you any idea of how seriously feedbak is taken:
• The whole 0.7.0 rewrite, and the abstrations and simpli�ations whih grew out of it, were triggeredby Ton Oguara's feedbak about his problems serializing lass templates. That is indeed a deeptivelytriky problem, and the older ode ould only handle non-trivial ases with a non-trivial amount of odegeneration. The 0.7 framework an do this with �relative� ease, and 0.8+ makes it trivial in many ases.
• This partiular doument (the one you're reading now), was largely inspired by Gary Boone's feedbakon the di�ulties of getting started with s11n. Also, the hanges in the registration proesses from 0.7xto 0.8 were inspired by Gary.
• s11nlite was developed largely beause of Ton's and Gary's feedbak.
• The massive build tree re-orgs between 0.8.x and 0.9.x were inspired by the Debian Projet's martin f.kra�t (yes, he prefers it spelled lower-ase).The ontat address, should you also feel ompelled to write what you really think about s11n, is at the top ofthis doument.Now, i an't promise to rewrite everything every time someone wants a hange, but all input is ertainlyonsidered. :)Whatever it is you're trying to save, s11n wants to help you save it, and goes through great pains to do somedeeptively di�ult triks to simplify this proess as muh as pratially possible. If it an't do so for yourases, then please onsider helping us hange s11n to make it apable of doing what you'd like it to. It is my�rm belief that the ore s11n framework an, with very little modi�ation, save anything. What is urrentlymissing are the algorithms whih may further simplify the whole proess, but only usage and experimentationwill reveal what that toolkit needs to look like. If you ome aross some great ideas, please share them with us!:) 8

1.4 Credits"It's a thankless job, but I've got a lot of Karma to burn o�."Anonymous Software DeveloperThere is no single, omplete list of all people who have in�uened this projet. A partial list, in no partiularorder:(If i have left you o� of the list, please let me know!)
• My mother and step-father Bonnie & David Pikartz, my father and step-mother Joseph & GailHudgins, my step-mother-by-adoption Kathy Beal, and my belated adopted dad, Gerry Beal1. Theyjust all need to be thanked in general. The 0.9.x branh, from 0.9.4 to 1.0.0, was diretly funded by avery graious donation from the Pikartz family.
• Rusty �Bozo� Ballinger wrote the oneptual forefather of s11n (http://libfunutil.soureforge.net).(Rusty, if you're still out there, get in touh!) As far as i know, Rusty also oined the phrase �s11n� as ashort form of �serialization�, whih i then stole as a domain name.
• Ton Oguara aidentally inspired the whole 0.6 �> 0.7 rewrite/refator by showing me how muh lient-side e�ort was really needed to de/serialize lass templates.
• Gary Boone provided valuable feedbak on a range of doumentation and features, partiularly onmaking it easier for developers to get started with s11n. Many of the 0.8.x improvements exist beause ofGary's feedbak. Gary also is redited with oming up with a useful naming onvention for SerializationProxies, MyType_s11n (a onvention now adopted in many of my projets).
• Roger Leigh provided the information needed to add libltdl support to the lassloader.
• Tom, from omp.lang.++, provided an interesting �x for an �interfae annoyane� in the lassloader. Itis still used to this day in registering lass fatories.
• martin f. kra�t, of the Debian Projet, put in a great deal of e�ort to get the 0.8.x series into theDebian, and was the driving fore behind the 0.8.x �> 0.9.x soure tree re-orgs. His ontinued feedbakis always insightful.
• Marshall Cline, of C++ FAQ fame, helped to orret some of the errors in the doumentation re-garding yles, joins and trees. His FAQ has a great setion on the topi of serialization in C++:http://www.parashift.om/++-faq-lite/
• Robert Ramey, author of the Boost serialization library (http://www.rrsd.om), for several insightfulemail onversations on the topi of serialization. His well-rafted library is ompared to this one (we mighteven say praised) in some detail in setion 28.
• Steve Madere suggested adding unit tests to the soure tree, and within an hour of doing so 2 signi�antbugs were aught and �xed. He also made a �nanial ontribution via the SoureForge/PayPal donationsystem.
• Andreas Johens provided several pathes for ompiling the 0.8.x tree under g 3.4.
• Mike Radford provided more pathes for g 3.4 and gave me ssh to his box to let me �x a ouple more.
• Patrik Lin demonstrated and helped loalize a long-standing ontainer-of-ontainers deserializationbug-in-waiting whih ouldn't wait any longer on his mahine (existed from 0.8.x until 0.9.17).
• Keven Weber helped trak down a ouple bugs by allowing me ssh aess into his mahine, where thebugs were appearing.
• Christian Prohnow, projet lead of P::Classes (http://plasses.om), allows me to integrate s11nsupport into P::Classes 2.x. The port provides a great opportunity for bug �nding and leanups.
• Dr. Mar Duerner, �rst for inviting me to plasses.om and seondly for his ontinued and on-goingfeedbak and haking sessions.1i've got 8 brothers and 4 sisters. Yes, i atually do know all of their names: (in no partiular order) Toby, Gerald, Ty, Trevor,Teven, Wayne, Wesley, David, Margorie, Melisa, Ashley and Cindy (though i've never atually met Cindy). Their birthdays? Err....??? 9

• Gregor Jehle, also of plasses.om, reported ompile problems on AMD64 and allowed me ssh aess tohis box to trak down and �x them.
• Ashran, my personal best friend and author of the Hakersquest Everquest(tm) emulator (http://hakersquest.org),was the �rst to ompile s11n under Windows.
• Peter �What's Happ'nin' !!?!!?!?!� Angerani, my long-time friend and mentor, for his ontinuedsupport and feedbak.
• To my esteemed Unix-loving olleagues, Ralf Lehmann andMartin Tessun, for agreeing, after bribingthem with their own personal Easter Egg in this doument, to look over this manual for me. (Hier isteuer Easter Egg, Jungs!!!)
• SoureForge (http://soureforge.net) has been hosting my ode sine 2000, and without them s11nwould have neither mailing lists, a bug traking site, nor a publi CVS tree. i enourage all users ofSoureForge to support their servie by buying a yearly subsription to their site.Various published authors have, rather unknowingly, had profound impats on various design deisions durings11n's evolution:
• Sott Meyers - a huge perentage of my ode is in�uened by Sott's always-pratial advie. All of hisbooks must be on any C++ oder's bookshelf. Here's your biggest fan, Sott!
• Andrei Alexandresu - his Modern C++ Design was the neessary atalyst i needed for realizing thelassloader implementation, and provided the basis for the internals of the phoenix<> lass, whih is usedextensively by s11n.
• Herb Sutter - A ouple of his (very numerous) artiles have led to diret hanges in this library. e.g. abreaking-down of some of the member-based interfaes into free funtions was inspired by his �What's ina lass?� artile.
• Stephen Dewhurst, author of C++ Gothas : every time i write �template lass� and orret it to �lasstemplate�, or hange the word �method� to �funtion�, i think of Stephen. ;) If i reall orretly, Stephenalso introdued me to the idea of Monostates, whih are oneptually similar to what i've been alling�Context Singletons.�
• C++ Templates: The Complete Guide, by Niolai M. Josuttis and David Vandevoorde, as well asJosuttis' The C++ Standard Library, were instrumental in implementing muh of the template ode usedby this library. The latter is always the �rst book i reah for when i've got a question about the STL, and99% of the time it has the answer2.i try to keep keep the list of ontributors up-to-date via an RSS feed:http://s11n.net/rss/s11n-ontributors.xml2 IntrodutionSo you want to save some objets? Strings and PODs3? Arbitrary objets you've written? A FooObjet orstd::map<int,std::string> or std::list<MyType*>?What?!?! You've got a:std::map< int, std::list< std::map< double, FooObjet<X *> * > > 4?!?!?Null problemo, amigo :2i say 99% beause i generally mistrust statements whih inlude a �100%� quali�er, but the truth is i an't remember a timewhen this book didn't have what i was looking for.3Plain Old Data types, suh as int, har, bool, double, et.4The only [remaining℄ inherently di�ult part for this one is getting the proper type names for eah omponent of the ontainerheirarhy! This problem disussed at length in this doumentation, the s11n soures, and the lass_loader library manual. It's notas straightforward as it may seem. Interestingly, for many ases (non-polymorphi types) we an atually get by without knowingthe type's name. 10

s11n is here toSave Our Data , man!Historially speaking, saving and loading data strutures, even relatively simple ones, is a deeptively thornyproblem in a language like C++, and many oders have spent a great deal of time writing ode to serialize anddeserialize (i.e., save and load) their data. The s11n framework aims (rather ambitiously) to ompletely endthose days of drudgery.s11n , a short form of the word �serialization�5, is a library for serializing... well, just about any data stuturewhih an be oded up in C++. It uses modern C++ tehniques, unavailable only a few years ago, to providea �exible, fairly non-intrusive, maintenane-light, and modern serialization framework... for a programminglanguage whih sorely needs one! s11n is partiularly well-suited to projets where data is strutured as hier-arhies or ontainers of objets and/or PODs, and provides unpreedentedly simple save/load features for mostSTL-style ontainers, pretty muh regardless of their stored types.In pratie, s11n has far exeeded its original expetations, requirements and goals, and it is hoped that moreand more C++ users an �nd relief from Serialization Hell right at home in C++... via s11n.A brief history of the projet and a desription of its main goals are available at:http://s11n.net/history.php2.1 Sope of this doumentOriginally, this doument set out to provide a quik-start guide to using the library's main features. Over timeit has evolved to over nearly every aspet of the library. Between this manual, the API doumentation, and thesample ode provided with the library, pretty muh all of your questions about the library should be answered.If not, feel free to email us with your questions.As always, the soures are the de�nitive plae for information. That said, i'm a �rm believer that developersshould not have to read the soures in order to be able to use a library, so there is an absurd amount ofdoumentation.2.2 s11n's DreamAnyone who has had to hand-ode save and load support for their data, even if only for relatively trivialontainers and data types (e.g. even non-trivial strings), will almost ertainly agree with the following statement:Saving data is relatively easy. Loading data, espeially via a generiinterfae, ismind-numbingly, ass-kikingly di�ult!The tehnial hallenges involved in loading even relatively trivial data, espeially trying to do so in a uni�ed,generi manner, are downright frigging sary. Some people get their dotorates trying to solve this type ofproblem6. Complete branhes of omputer siene, and hoardes of omputer sientists, students, and aolytesalike, have researhed these types of problems for pratially eons. Indeed, their e�orts have provided us anumber of ritial omponents to aid us on our way in �nding the Holy Grail of serialization in C++...In the 1980's IOStreams, the predeessor of the urrent STL iostreams arhiteture, brought us, the C/C++development ommunity, tremendous steps forward, ompared to the days of reading data using lassial brute-fore tehniques, suh as those provided by standard C libraries7. That model has evolved further and further,and is now an instrumental part of almost any C++ ode8. However, the pratie of diretly manipulating datavia streams is showing its age. Suh an approah is, more often than not, not suitable for use with the ommonhigher-level abstrations developers have ome to work with over the past deade (for example, what does itreally mean, semantially speaking, to send a UI widget to an output stream?).In the mid-1990's HTML beome a world-wide-wonder, and XML, a more general variant from same familyof meta-languages HTML evolved from, SGML9, leapt into the limelite. Pratially overnight, XML evolvedinto the generi platform for data exhange and, perhaps even more signi�antly, data onversion. XML is here5�s11n� was oined by Rusty Ballinger in mid-2003, as far as i am aware. It follows the tradition set by �i18n�, whih is shortfor �internationalization� - the number represents the number of letters removed from the middle of the word.6But all i got was this library manual. ;)7That was all well before my time, but i read a lot of C++ books. ;)8Are you going to tell me you never use std::out and std::err? Yeah, right. Tell it to your grandma - maybe she'll believe you.9[Standard,Strutured℄ Generi Markup Language 11

to stay, and i'm a tremendous fan of XML, but XML's era has left an even more important legay than theelegane of XML itself:More abstratly, and more fundamentally, the popularity and �well-understoodedness� of XML has greatlyhightened our olletive understanding of abstrat data strutures, e.g. DOMs [Doument Objet Models℄,and our understanding of the general needs of data serialization frameworks. These points should be neitheroverlooked nor underestimated!What time is it now? 2004 already? It looks like we're ready for another 10-year yle to begin...We're in the 21st entury now. In languages like Java(tm) and C# serialization operations are basially built-in10. Generi lassloading, as well, is EASY in those languages. Far, far away from Javaland, the problemdomain of loading and saving data has terri�ed C++ developers for a full generation!s11n aims, rather ambitiously, to put an end to that. The whole general problem of serialization is a veryinteresting problem to me, on a personal level. It fasinates me, and s11n's design is a diret result of theenergy i have put into trying to rid the C++ world of this problem for good.Well, okay, i didn't honestly do it to save the world['s data℄:i want to save my objets!That's my dream...Oh, my - what a oinidene, indeed...That's s11n's dream, too...s11n atively explores viable, in-language C++ routes to �nd, then take, the C++ ommunity's next majorevolutionary step in general-purpose objet serialization... all right at home in ISO-standard C++. Thisprojet takes the learnings of XML, DOMs, streams, funtors, lass templates (and speializations), Meyers,Alexandresu, Strousup, Sutter, Dewhurst, PHP, �Gamma, et al�, omp.lang.++, appliation frameworks,Java11, and... even lowly ol' me (yeah, i'm the poor bastard who's been pursuing this problem for 3+ years ;),and attempts to reate a uni�ed, generi framework for saving... well, damned near anything. Atually, savingdata is the easy part, so we've gone ahead and thrown in loading support as an added bonus ;).In short, s11n is attempting to apply the learning of an entire generation of software developers and arhitets,building upon of the streets they arved for us... through the silion... armed only with their bare text editorsand the soure ode for their C ompilers. These guys have my utmost respet. Yeah, okay... even the oneswho hose to use (or implement!) vi. ;)Though s11n is quite young, it has a years-long �oneptual history�12, and its apabilities far, far exeed anyoriginal plans i had for it. Truth be told, i use it in all of my C++ ode. i an �nally... �nally, FINALLYSAVE MY OBJECTS!!!!i hope you will now join me in sreaming, in the loudest possible volume:It's about damned time!!!2.3 Main features"I don't make my mistakes more than one. I store them arefully and after some time I take themout again, add some new features and reuse them."Anonymous Software DeveloperFor the most part, the features list is the same as for s11n 1.0.x. For those of you who haven't used 1.0.x, thelibrary's primary features and points-of-interest are:
• Quite possibly the most �exible and easiest-to-use C++ serialization framework in the known universe.1310Though i do have very deep fundamental di�erenes with Java's built-in serialization model!11Inidentally, not C#: s11n was started before i ever touhed C#. In all honesty, i �nd C#'s ore model to be inferior to s11n,at least in terms of its lient-side interfae. For example, it really bugs me that in C# (or any other serialization framework), thelient must know something so basi as what �le format their data is stored in. i say (and s11n says): only a �le's i/o parsers reallyare what format a �le is in.12Utility-lass oding, and lots of design thought, started in early 2001. The �real oding� began in September, 2003, one i�nally raked the serets i needed to implement the lassloader.13On a features/tehnial level, the only urrently-existing C++ serialization framework whih an even begin to ompare withs11n is Dr. Robert Ramey's Boost serialization lib, available via http://www.boost.org. For a omparison of Boost and thislibrary, see setion 28. 12

• Provides lient ode with easy de/serialization of arbitrary streamable types and user-de�ned Serializabletypes.
• Out of the box it supports all standard STL ontainers: std::list, vetor, set, multiset, map, multimapand valarray.14
• Lends itself well to a large number of uses, from de/serializing arbitrary vetors or maps of data (a-laon�g �les) to saving whole appliations in one go.
• Does not tie lients to a spei� Serializable interfae/heirarhy. The internally-used interfaes an beeasily direted to use lient-spei� interfaes, whih need not even be virtual. This means that thelibrary's interfae an be made to onform to lient-side objets' needs, as opposed to the other wayaround.
• Serializable Proxying allows lients to attah proxy lasses to arbitrary types, suh that the proxy typeis delegated all de/serialization operations. The end result is that it is possible to serialize a given typewithout having to touh a line of that type's ode, nor does that type have to know its playing along.
• Advaned tehniques allow lient ode to ompletely reimplement/replae most of the library's underlyinglayers with their own - without touhing the s11n ode. For example, lass fatories or even the lient-to-ore API translation layer an be replaed by providing ertain lass template speializations.
• Integration into existing lass hierarhies is straightforward, quik, relatively painless, and an often beinrementally applied to subsets of a projet over time, as needed, as opposed to foring a lient toompletely refator. In fat, using proxies means lient lasses don't normally have to hange at all to betransformed into �True Serializables.�
• The data persistene model inherently does not su�er (as, e.g. Java's does) from the problem of invalidatingserialized data every time an internal hange is made to a Serializable data type. It's �struture-and-properties�-based system ensures that legay data do not beome invalid until developers15 want them tobeome so.
• It sports ompile-time type-safe lassloading without the use of a single type-ast (neither in the lient norin the library). The lassloader is fatory-based, and an load just about any lasses, inluding 3rd-partylasses, without them knowing they are partiipating. Transparently loading new types from DLLs issupported if available on your platform.
• The API is 100% data-format agnosti and plaes no �le naming onventions lient data �les. Several(err... many) di�erent data format handlers urrently exist, and adding ustom Serializers is fairly painless:all you need is an input parser and an output formatter16. Existing formats inlude three XML dialets,one MySQL-powered �format�, and experimental add-on support for ftp/http whih works with arbitrary�le-based formats. That is, as far as i am aware, more formats than any existing serialization library,regardless of implementation language. Why so many? Mainly to show that it an be done ;).
• Does not impose any speial �lename onventions or restritions on lients17. That is, if you want to allyour saved data MyData.do, go right ahead.
• All lients of s11nlite may share serialized data between themselves, regardless of their underlying lientserialization interfaes. If their APIs an see eah others' fatories then they an also transparently fullydeserialize eah others' data.
• Optional lient-transparent zlib and bz2lib �le de/ompression, for 60-95% �le size redution. Whenenabled, de/ompression happens transparently - usage of s11n does not hange one iota.
• The i/o sub-framework is stream-entri, not �le-entri. This sub-module is e�etively optional: lientsare not required to use any of the supplied i/o ode, but must then supply their own Serializers (i/ohandlers, whih need not use streams, but ould use a relational database or any other bak-end).14Reminder: std::queue, deque and stak are not stritly ontainers - the are ontainer adapters. The unusual traversalrequirements of queues and staks make them di�ult to serialize e�iently.15Or, admitedly, the all-powerful Marketing Diretor.16A new Serializer an be implemented in under an hour if one has related Serializer or parser ode to start from, and an normalybe done in as little as a few hours even when writing from srath. The real e�ort is normally in writing the input parser: the onlyspeial onsideration normally needed is the esaping of, e.g. strings (this is format-dependent).17It might be limited by your underlying �lesystem or STL, e.g. in regards to Uniode. s11n has no speial support for Uniode,relying on std::string for all string operations. 13

• The primary data strutures follow STL [Standard Template Library℄ onventions and are ontainer/funtor/algorithm-entri, thus many generi algorithms an be easily applied to them. The library omes with several usefulfuntors and algorithms for working with serialized data. This also allows omplete separation betweenthe proesses of the state storing/restoration and any resulting i/o.
• Uses only ISO-standard C++ onstruts, no ompiler-spei� extensions.
• Allows lients omplete ontrol over how an objet is serialized: s11n makes no assumptions about whatyou want, it only tries (very hard) to help you meet your data persistane needs. That said, s11n an betold how to serialize many omplex objet types with very little instrution, so lients need not normallydo very muh work.
• It omes with an absurd amount of doumentation, in the form of this doument, the API dos, and theweb site.Okay, okay, we'll stop there! ;) (The list really does go on!)2.4 Notable Caveats (IMPORTANT)It would be dishonest (even if only mildly so ;) to say that s11n is a magi bullet - the solution to all objetserialization needs. Below is a list of urrently-known major aveats whih must be understood by potentialusers, as these are type types of aveats whih may prove to be deal-breakers for potential s11n users. Muhmore detailed information and speulation about the overall lient-side osts of deploying s11n-based ode anbe found in setion 25.
• As it is heavily based on lass templates, it is implemented largely as inlined ode in header �les (foromplex linking reasons). The end e�et on lients is that ompilation times and objet/binary �le sizesdo su�er. (One user reports that ompile times inrease by as muh as 14 times when building withlibs11n 0.8.x, but this has been ut drastially sine his report.) Some ode is in implementation �les, solients must still link to the s11n library, just as they would for any typial C/C++ library.
• Due largely to the side-e�ets of heavy reliane on lass templates, s11n is unsuitable for systems withvery limited �lesystem spae or main memory (e.g. embedded systems, handheld omputers, et.).
• s11n, at its ore, an be quite di�ult to grasp. It's not the details whih are di�ult for most people,i think, but the fat that the details are hidden behind very abstrat �onventions� and �lose approxi-mations�. Using the s11nlite interfae will ompletely eliminate most potential �startup problems� whengetting used to this library. What is s11nlite? See setion 2.5.
• s11n an serialize, but not deserialize, lasses ontaining referenes. There are workarounds, but theyrequire modifying suh lasses to internally hold a pointer instead of a referene, making them defaultontstrutble, and maybe other minor hanges.
• The supplied build tree will only run on GNU-based systems. That is, systems running all the ommonGNU tools like make, GNU bash, and other exeedingly ommon Open Soure tools, like perl. That said,the ode itself should be easily portable to other build systems, so long as those hosts support appropriateompilers (see below). We will gladly host build-related �les for other platforms or build environments(e.g. GNU Autotools, Mirosoft environments, et.) in the distribution and/or web site, should userssubmit those.
• Requires a relatively reent, ISO-onformant C++ ompiler with exellent support for lass templates.Only known to work with GCC 3.2x - 3.4.x, and known to NOT work with GCC 2.9x. On Win32platforms, as of version 1.1.2 it is known to build under MSVC 2003 and 2005.
• s11n is untested with serializing binary data. It �should be possible�, but implementing it in terms of theurrent Serializers (e.g. as string-enoding onversions like base64) would be rather ine�ient, i think(even moreso than s11n's normal tehniques, i mean). That said, any data whih an ultimately berepresented as a one or more std::string objets and an be strutured in a DOM-like fashion (even ifonly via transformation) should pose no problems at all for s11n. (We avoid binary formats so that wean evade the problems related to mahine endianness.)
• The library urrently has no algorithms for saving graphs - that is, strutures with joins. This an andhas been done in s11n, but no generi algorithms are (yet) provided for doing so. For more informationsee setion 23.2. 14

• s11n is untested in multi-threaded environments. See setion 23.3 for more details and speulation.
• It is driven with Generi Programming and reusability/maintability in mind, not High-performane Com-puting, and thus it may not be performant enough for projets whih need, really, really fast ode. (Thatsaid, s11n is aeptably fast for all uses i've had for it. Try it out and make your own judgement.) Itsgeneral model inherently at-least-linear (or even worse), as disussed in more detail in setion 25.5.
• s11n's development is primarily steered by my hobbies and my lient-side needs, and is onstantly underexperimentation.
• When statially linking against libs11n, dynami loading of DLLs will not work. i am not entirely surewhy.2.5 WTF is s11nlite?(WTF is a tehnial term used very often by I.T. personnel of all types. It is short for �What the foo?!? �)s11nlite is a �light-weight� s11n sub-interfae written on top of the s11n ore and distributed with it. Itprovides �what most lients need for serialization� while hiding many of the details of the �raw� ore libraryfrom the lient (trust me - you want this!). Overall it is signi�antly simpler to use and, as it is 100% ompatiblewith the ore, it still has aess to the full power �under the hood� if needed. s11nlite also o�ers a potentialstarting point for lients wishing to implement their own serialization interfaes on top of the s11n ore. Suhan approah an free most of a projet's ode from diret dependenies s11n by hiding serialization behind aninterfae whih is more suitable to the projet. (Suh extensions are beyond the sope of the doument, butfeel free to ontat the development list if you're interested in suh an option, and we'll help you out.)Historially, the s11n arhiteture has been signi�antly refatored three times, and it has evolved to be moreand more useful with eah iteration. This partiular iteration is light years ahead of its predeessors, in termsof power and �exibility, and is also muh simpler to work with and extend than earlier arhitetures.Users new to s11n are strongly enouraged to learn to use the ode in the s11nlite namespae before lookinginto the rest of the library. Doing so will put the oder in a good position to understand the underlying s11narhiteture later on. Users who think they know everything are still enouraged to give s11nlite a try: theymight just �nd that it's just too easy to not use! Don't let the 'lite' in the name s11nlite fool you: it's onlyalled s11nlite beause it's a subset (but a funtionally omplete one) of an even more powerful, more abstratedlayer known as �the s11n ore� or �ore s11n.�2.5.1 Repeated warning: learn s11nlite �rst!We'll say this again beause people don't seem to want to believe it...i wrote s11nlite beause i, the author of s11n, found s11n's ore �too detailed� for lient-side use. i like thegeneral ore model, but it is umbersome to use diretly, due to the many plaes where template parametertypes must be spei�ed. So i got tired of dealing with it and sought out a Simpler Way of Doing Things. Thatis what s11nlite is all about.If you think i'm kidding about learning s11nlite �rst, take a look at this note from s11n user Paul Balomiri18:"I didn't trust you on the point about understanding s11lite �rst (don't ask why, it was a mistakeanyway)."That is, for the vast majority of ases, s11nlite provides everything lients need as far as using s11n goes, andhas a notably simpler interfae than the ore library. s11nlite, ombined with the various generi serializationalgorithms shipped with s11n (e.g. in listish.hpp and mapish.hpp), provide a omplete interfae into theframework.Another point to onsider: in lient-side ode i (s11n's author) generally use s11nlite and the generi al-gos/proxies, and rarely dip down into the ore, nor do i deal with the Serializer interfae from lient ode.Thus, i an assure you - a potential s11n lient - that s11nlite an do almost anything you'd want to do withthis library, and is signi�antly easier to work with than the ore interfae is.If you still don't believe me, please re-read this setion until you do.18As of this writing, Paul uses s11n 1.0.x for some massive data sets: 10 million data points desribing the whole street networkof Vienna, Austria. :) 15

2.6 Getting and installing s11n"Linux suks twie as fast and 10 times more reliably, and sine you have the soure, it's your fault.�Anonymous Software Developers11n an be downloaded from:http://s11n.net/download/2.6.1 Building under GNU systemsThe build tree shipped with the main soure tree is GNU-entri, beause i happen to use GNU tools. Buildingit on systems whih do not host GNU tools (g, make, bash, et.) will require reating ustom build ontrol�les (projet �les, make�les, or whatever).To build the library, use the onventional approah:./onfigure [--options ...℄makemake installThe most ommon option passed to on�gure is --prefix=/some/path, whih de�nes the top-level path forinstalling the library. If you do not have admin rights on the mahine, i suggest using --prefix=$HOME, andadding $HOME/lib to your LD_LIBRARY_PATH.Pass --help to on�gure for a list of more options.2.6.2 Building under Windows and �other� environments"People say it is hard to swith from Windows to UNIX; sure: but it is impossible to swith fromUNIX to Windows!"Anonymous Software DeveloperStarting with release 1.2.0, we release a �stati� variant of the soure tree whih omes with all generated �lespre-generated and doesn't inlude any build-related �les exept for a very simple Make�le. The intention is tomake it possible to easily pull the s11n soure ode into your own build tools, regardless of the platform. Todownload one of these releases, look for s11n releases named libs11n-VERSION-nobuildtools.*.As of version 1.1.2, s11n is known to ompile under at least a ouple variants of MS Dev Studio. For full instru-tions on building under Windows see the �le named README.WIN32, whih omes with the soure distribution.The demo Make�le will also be helpful, as it shows whih soures belong to whih parts of the library.2.6.3 Compiling and linking s11n lient appliationsOn Unix systems, use the libs11n-onfig sript, installed under PREFIX/bin, to get information about yourlibs11n installation. This inludes ompiler and linker �ags lients should use when building with s11n. It may(or may not) be interesting to know that libs11n-onfig is reated by the on�gure proess, so if you haveused a build proess other than the one shipped with the library, you may not have this sript, or may need togenerate it by hand.When linking lient binaries and shared libraries on Unix systems, you must use the -rdynami (or equivalent)linker option. If you do not, fatory registrations will not work (they will never happen) and deserialization ofpointer types will therefor fail. This is unforuntate, but true.As with all Unix binaries whih link to dynamially-loaded libraries, lients of libs11n must be able to �ndthe library. On most Unix-like systems this is aomplished by adding the diretory ontaining the libs to theLD_LIBRARY_PATH environment variable. Alternately, many systems store these paths in the �le /et/ld.so.onf(but editing this requires root aess). To see if your lient binary an �nd libs11n, type the following from aonsole:ldd /path/to/my/appExample: 16

stephan�owl:~/vs/s11n.net/1.1/s11n/sr/lient/sample> ldd ./demo_oordlinux-gate.so.1 => (0xffffe000)libs11n.so.1 => /home/stephan/vs/s11n.net/1.1/s11n/sr/libs11n.so.1 (0x40019000)...libdl.so.2 => /lib/libdl.so.2 (0x4034d000)If you see a message like �not found� next to a library, then the dynami linker annot �nd it. In that eitheryou do not have the library or it is not in one of the searh paths used by your system's dynami library loader,whih are typially de�ned in the environment variable $LD_LIBRARY_PATH or the �le /et/ld.so.onf.2.6.4 Building under Cygwin, Ma OS/X (Darwin), et.As i not have these tools, i annot diretly do ports to them. Anyone interested in assisting, please get in touh.The soure ode is believed to be ompilable under any reent, standards-ompliant C++ platform. It mightrequire a tweak here and there for spei� platforms, but no major inompatibilities are expeted.2.7 Version Compatibility�In this library, the only thing whih is onstant is the namespae.�Anonymous Software DeveloperAs of the release of 1.0.0, libs11n will attempt to follow the version ompatibility guidelines laid out below.
• Major version number: the X in X.Y.Z. With Major version inrements there are no set guidelines asto what might hange, and there are absolutely no guarantees of ompatibility with older releases.
• Minor version number: the Y in X.Y.Z. Minor number inrements may or may not be API-ompatiblewith previous releases. As per �the Linux onvention�, odd-numbered Minor numbers represent �devel-opment trees�, intended for developers and early-adopters. Likewise, even-numbered Minor numbersrepresent �stable� trees, suitable for lient use. Within development trees, existing onventions might behanged signi�antly at any time, whereas in stable trees they will not.
• Path level: the Z in X.Y.Z. Path-level hanges should be onventions-ompatible with earlier releasesin the same Minor number, and preferrably binary-ompatible. Binary ompatibility will be sari�ed inthe interest of �important� �xes or additions, but this should be the exeption, not the rule. Within thesame even Minor number, well-established onventions will never be drastially altered from one pathlevel to the next (in development trees, anything goes).s11n's basi model ensures that data formats are almost always ompatible aross di�ering s11n versions, andthat when they are not then it was intended to be so (it doesn't happen by aident). It is very rare thata format ever hanges after its initial de�nition, and thus data saved with s11n are �almost guaranteed� tobe ompatible aross s11n versions, assuming a given format is not abandoned at some point. In ases wheresuh ompatibility is broken, i will do my best to release a tool to onvert older data �les to newer formats.Historially speaking, only one has an s11n-supported format ever hanged signi�antly after its initial release(and two of them have stayed the same sine the year 2000). See setion 14.2 for more information on theavailable Serializers.2.8 Optional supplemental librariess11n an make use of the following additional libraries, but does not stritly require them:
• zfstream, a published-by-s11n.net lib, provides transparent de/ompression for �les using zlib and bz2.This library omes as part of the soure bundle but is not required by s11n 1.1 and higher (it is required in1.0.x). Diret dependenies on this library are not reommended, as this library will be replaed one i getmy hands on some more �exible ode being written by my friend Mar Duerner. If you want zlib/bz2libompression now, however, this is the way to plug it in to s11n.
• libexpat, required only if you want to build and use the expat-based XML Serializer (setion 14.2.2).This library is almost ertainly installed on almost all Unix-like OSes, beause it is the de fato standardamongst the various Open Soure, C-based XML libraries. The on�gure sript heks for it, and disablesthe expat-based Serializer if the expat library and headers are not found.17

3 Main di�erenes between 1.0.x and 1.2.x"We're going to tell people that even if (it) means we're going to break some of your apps, we'regoing to make these things more seure. You're just going to have to go bak and �x it."Craig Mundie, of Mirosoft, http://www.wired.om/news/tehnology/0,1282,56381,00.htmlThis setion will only be of interest to users of s11n 1.0.x, and summarizes the signi�ant hanges from thatversion (i.e., those whih would diretly a�et users of 1.0). This entire setion assumes prior knowledge of hows11n works. If you have never used 1.0, and are just starting out with s11n, skip this setion entirely - it islikely of no value to you unless you're a fan of arane software history. New users are strongly reommended togo straight to 1.2.x, bypassing 1.0 altogether.While this setion might look quite large, arhititurally very little has hanged sine 1.0. However, there havebeen a number of ode reorgs and a few relatively low-impat additions. It is believed that porting from 1.0will require relatively little lient-side work (but some will be required, mainly due to header hanges).3.1 s11n mantra hangeSine the beginning, s11n's ore mantra has been that s11n is here to Save Your Data, man! As is turns out,that is a misrepresentation. Atually... it's a bald-faed lie. The honest truth is that s11n is here to...SaveOur Data, man!Note the one-letter hange, whih is more signi�ant than the single missing letter might imply.3.2 Code onsolidation and removalOne of the major goals of 1.1 is to have a tree whih will ompile on (Mirosoft(tm) Windows(tm))(tm) platforms.Another is simplifying support for arbitrary build proesses. Yet another related goal is to make the ore librarymore easily forkable, so as to be able to opy it into arbitrary trees.One requirement for ahieving these is some major ode refatoring, mainly elimination of all of the �extrabloat� whih omes along with the support libs whih 1.0 relies upon (that is no trivial amount, due to mypakrat-like nature when it omes to utility ode).So, with our sights on portability, and also in the interest of a leaner build proess, the vast majority of the�support libs� have been fatored either out or in. That is to say: some of the ode (not muh) got moved(bak) in to s11n and the rest (the majority) was sent paking to CVS limbo. In any ase, the s11n ore tree isnow 100% standalone, with some notes:
• The zfstream support lib is used by s11n if it is found, but it is not required. This is the only one of the1.0 support libs whih 1.1 now looks for - it no longer uses any of the others whih 1.0 relies upon.
• All Serializers whih ship with the library will be linked in with the main library, instead of as separateDLLs. This is primarily in the interest of easing portability to other platforms. Note that this does nothange how the Serializers are used in lient ode, but a�ets how they are linked in with the main lib: theyare still loaded via the dynami-style interfaes (e.g. s11nlite::reate_serializer(�MySerializer�)).If you are the only other person on the planet who atually does dynamially load Serializer DLLs thishange will a�et you, but if you're doing that then you know what needs to be done to �x it.3.3 Fatory ode reimplementedWhile the older fatory/lassloading ode (named llite) is funtionally okay, and provides an adequate interfae,its ode base ontains a lot of �evolution ruft�. In Deember, 2004, i was o�ered a spot on the plasses.omteam, to assist them in their 2.x rewrite. The �rst assignment was to implement a new fatory, whih i did bytaking the learnings from their 1.x fatory, s11n's llite, and some other experimental ode. After it proved itsworth in the P::Classes tree, i ported a opy into s11n. The newer fatory is not markedly improved, funtionally,but provides a more foused fatory interfae than llite and has a ouple new triks to try out.(It may be interesting to know that P 2.x has its own integrated opy of libs11n. That's why i want the s11node to be easily forkable!) 18

3.4 node_traits<> hanges, s11n::data_node replaed with s11n::s11n_nodeTo make a long story very short: the data_node type was �the original� abstrat s11n ontainer19, introduedin s11n 0.7.0. When the type traits system ame along (version 0.9.3), i refatored data_node into a slightlymore foused API, s11n_node. That lass has been around sine the summer of 2004, but hasn't been ativelyused within the s11n tree (only for testing the node_traits-related features). As of 1.1.0, data_node has beenompletely removed and replaed with s11n_node. Also, s11n_node's API has hanged slightly, to make it abit leaner. Sorry for not having a depreation period, but making the swith is atually muh less painful thanit sounds - even trivial (or a no-op) for most lient-side ode.What this means for lient ode:
• Users of the s11nlite::node_type typedef normally simply need a reompile (whih they would needanyway, beause 1.1 is not binary-ompatible with 1.0).
• Users of node_traits<> iterator-related typedefs and funtions will need some slight modi�ations: don'tuse the (missing) typedefs, but go through the appropriate sub-typedef, so to say. For example:node_traits<>::begin()/end()and node_traits<>::[onst_℄iteratorare now node_traits<>::property_map_type::members (they always were, but the �onveniene� interfae was removed beause it was onfusing to re-member if it refered to the properties or the hildren).
• Clients who expliitely used data_node should globally replae that with s11n_node. This transition willnormally be seemless if you use node_traits<NodeType> to manipulate your nodes (that is The One andTrue Way), otherwise other hanges might be required to aomodate the API di�erenes between thetwo node types. The APIs are funtionally idential, but are intentionally di�erent so as to trigger errorsin the s11n ore ode if it does not hold to �the node_traits<> rule.� (That is, the two node types havedi�erent APIs to fore me to �x any s11n ore ode whih isn't using node_traits<>!)
• Due to the above hange, the data_node.hpp header of ourse no longer exists.
• These hanges should not a�et data �les at all, beause the two node types are fundamentally the same(only one string identi�er in their output is di�erent, but it's not signi�ant for lient purposes).Users who follow the doumentation and use node_traits<NodeType> to query and manipulate their data nodes,and lients who use template-de�ned Node Types rather than hard-oded ones, are mostly not a�eted by thishange but may need to make some header-related �xes and a ouple typename �xes. e.g. see the notes aboutabout some typedef-related hanges and the removal of the begin() and end() members of node_traits<>.Their existene was logially ambiguous, with hildren and properties both ompeting for iterator types, andwas onfusing to remember whih iterator begin() really returned. node_traits<> still ontains all of thetypedefs and aessors needed to get at that data, but the user will have to go one typedef or funtion alldeeper to get it (but the lient ode's intention will also be lear to humans, whih was not the ase beforewithout an additional lookup in the API dos).3.5 New header onventions, faster ompile timesLargely in the interest of bringing some sanity to the s11n build tree, and partly beause i have an insatiableurge to hak build proesses20, we have undergone some signi�ant build tree and header reorgs. Again. Yes,i know that's twie... er... three times in the past 12-month period. Learn to think of it �improvement vianatural seletion� and it doesn't hurt quite so badly. If it makes you feel any better (it does me), the very basitests i have run show a ut in ompile time by as muh as 80%. That is, as muh as 5 times faster omparedto equivalent 1.0 ode. Most lient-side ode will probably see ompile times ut by 50%-70%, at least as far asthe s11n-side of the ompiles goes, and some ode won't see muh of a di�erene.First o�, the main Serializable registration header has been renamed: reg_serializable_traits.hpp is nowalled reg_s11n_traits.hpp, beause that's what the �le does - registers s11n_traits<>-related ode.Seondly, many headers have been renamed or onsolidated into other headers (this mainly a�ets the i/o andproxy ode, but also some of the ore algorithms and funtors).The most notable reorg is how the serialization proxies for PODs and STL ontainers are registered. In 1.0 theywere registered en masse via headers whih inluded support for multiple ontainers. This is all �ne and good,19Not to misrepresent: i mean �the original� as in �the �rst one to exist in libs11n.� The basi model for suh ontainers hadbeen demonstrated as early as summer 2000 in Rusty Ballinger's libFunUtil, if not also in other plaes, and was used, but in amuh di�erent way, in s11n 0.6.x and earlier.20Shameless plug: http://to.soureforge.net 19

from an ease-of-use standpoint, but auses measurable (and human-notiable) inreases in lient-side ompiletimes even for ases where most of the proxies aren't used. In an attempt to derease lient-side ompile times,eah proxy type now has its own header. All suh headers follow ommon naming onventions and live in a newheader subdiretory:#inlude <s11n.net/s11n/proxy/std/vetor.hpp> // register std::vetor<T> proxy#inlude <s11n.net/s11n/proxy/pod/int.hpp> // promote 'int' to a first-lass Serializable#inlude <s11n.net/s11n/proxy/listish.hpp> // algos and base proxies for list-like types, but no proxy registration#inlude <s11n.net/s11n/proxy/mapish.hpp> // algos and base proxies for map-like types, but no proxy registration... and so on...The end e�et is that lients must individually hoose whih proxies they will need. This is slightly unfortunate,but is a one-time ost of inluding the proper header(s). The main bene�t is, for the vast majority of lient-sideases, improved ompile times. Even in the worst ases, ompile times should be faster than with 1.0.x beause1.0 tries to install a lot of proxies whih are almost never used. If this hange really annoys users, they may maketheir own �mass-inlude� �les and inlude all the proxies they want to. In fat, if ompile times are not a onernto you, either beause you are extremely patient or beause you have aess to the lab's Monster Computer, ireommend the mass-inlude approah, but only for the sake of ease-of-use when it omes to �guring out whatproxies you need. For standard PC users, i don't reommend the mass-inlude approah at all, at least notunless you are unusually patient while waiting for your ode to ompile.i have attempted to struture the proxy headers in a maintainable and extendable manner, suh that it shouldn'ttake too muh e�ort to loate the proper proxy header one needs, nor to add new proxies by following the urrentonventions. If you have suggestions for a better layout, please feel free to get in touh! (But be aware thatyou suggestion might be used, whih might of ourse mean more ode reorgs. ;)3.6 Fething lass names of SerializablesIn one of those, �You utter moron! You should have done this nine months ago! � moments, the s11n_traits<SerializableType>interfae has been extended to inlude one stati funtion:stati std::string lass_name(onst serializable_type * HINT);See the API dos, in traits.hpp, for full details, but brie�y: this replaes all of the older lass_name<> andlassname<>() kludgery whih has been around sine s11n's earliest days (0.2.x or 0.3.x, i think). The ende�et is the same, funtionally, but this approah �ts in leanly with the rest of the API, whereas the olderapproah did not (i never did like the old way, but it was neessary for a long time). This approah also allowsusers of 3rd-party libraries like Qt to use polymorphism-friendly BaseObjetType::lassName() [or similar℄member funtions, whereas the older approah did not diretly support that at this level of the s11n arhiteture.Design note: i am not at all happy about not providing a default of 0 for the HINT argument.However, given the usage of s11n_traits<>, whih is only �extended� via template speializations,i also do not like the idea of relying on all speializations to provide that 0 in their interfaes. Also,in the ase that it ever beomes useful to make s11n_traits<> a virtual base lass, lass_name()might beome a virtual funtion (i repeat: that is theoretially possible, not a onrete plan), anddefault parameter values in virtual funtions make me queasy, tehno-philosophially speaking.3.7 Client-extendable s11nliteOne of the more interesting additions to 1.1 is a polymorphi lass whih provides the same API as s11nlite:lient_api<NodeType>. This e�etively allows users to have an s11nlite interfae for ustom Node Types or toadd ustom stream handlers to the s11nlite API. s11nlite has been refatored to be based o� of this new lass,suh that lients are be able to sublass it and provide their own lass instane to s11nlite via a bak-door-shared-instane-injetion tehnique. This an be used, e.g. to provide network support on top of s11nlite usingtools like the experimental ode at http://s11n.net/ps11n/ (that ode was the primary inspiration for thenew lass). For example, network-aware extensions to s11nlite an be plugged in to arbitrary s11nlite lientswithout their ode, or s11nlite, even requiring a reompile. If some other desperate oder out there adds, say,Orale support, your s11nlite lient ode will be able to use it without expliitely having to know about it.Consider, too, that we an atually use fatories to dynamially load arbitrary instanes of the lient_api<>.Weird, eh? 20

3.8 ~/.s11nlite on�g �le removedIn 1.0, s11nlite saves its on�guration when the library shuts down. While this is all �ne and good for a systemwhere only one app uses s11nlite, it auses interferene when multiple apps share s11n. For example, when AppA sets s11nlite::serializer_lass(�MySerializer�), App B is going to get that default the next time itstarts unless it sets its own (whih might then a�et App C... ad nauseum). Thus we take the simple routeand remove it. The only a�et this has on lients is that they might want or need to set a default Serializerswhen their app starts up, using s11nlite::serializer_lass().While the majority of s11n users use the library in only one soure tree, i urrently use it in no less than sixprojets, and have often experiened problems with eah app imposing its own idea of a default �le format onthe other apps. So, like so many other dead-ends of evolution, ~/.s11nlite is gone.Sine the s11nlite on�g objet was never really advertised as a feature, it is thought (hoped) that this hangedoes not a�et any lients.Note that the serialization of an appliation-wide on�g �le is trivial, but that tehniques like �nding a user'shome diretory are platform-spei� (even under Unix, $HOME is not always the user's home diretory).See setion 18.4 for info about a new lass whih provides behaviour similar to the older s11nlite on�g objet.3.9 Exeptions onventionsAs of version 1.1, i've �nally started seriously working on de�ning exeption onventions for the framework.Newer ode �xes all known potential leaks whih ould have happened in the fae of exeptions in 1.0.x. Also,many algorithms an �nally make some guarantees whih weren't possible in 1.0. If you are a 1.0 user with noompelling reason to upgrade, this is the ompelling reason. These �xes theoretially an't be bakported into1.0 without either a really signi�ant e�ort or signi�ant inompatibilities with other 1.0 releases, neither ofwhih i'm up for.See setion 16 for details, and please feel free to make suggestions.4 Core oneptsUsers who want to fully understand s11n should read this setion arefully - here we detail the major omponentsof, and terms used within the ontext of, the s11n arhiteture. Understanding these is ritial if one wantsto truly understand how the library works. That said, a lot an be done lient-side without understandinganywhere near all of the gory details: one an get quite far by simply opying example ode!4.1 Terms and De�nitionsBelow is a list of ore terms used in this library. The bolded words within the de�nitions highlight other termsde�ned in this list, or denote partiularly signi�ant data types. This bolding is intended to help reinforeunderstanding of the relationships between the various elements of the s11n library.Note that some terms here may have other meanings outside the ontext of this software, and those meaningsare omitted for larity and brevity - here we only onern ourselves with the de�nitions as they pertain to usas users of s11n.
• s11n - several meanings:� A short-hand form of the word �serialization�, used in many ontexts.� The literal name of this software.� Serialization as a omputing domain.� Other, more ontext-spei�, meanings.
• Data Node or S11n Node (S-Node) - a generi term for map-like types whih store arbitrary key/valueproperties and hild nodes, plus some meta-data (like type information for the stored data). They arestrutured in a tree-like fashion, DOM-style. In s11nlite this role is played by the s11n::s11n_node type,and ore s11n supports any node type whih onforms to the node_traits<NT> onventions (see below).Note that using a Data Node's API diretly from lient ode is disouraged. Please prefer the API providedby s11n::node_traits<DataNodeType> instead, as desribed in setion 6.1.As of version 1.1.3, the term Data Node is being slowly phased out in favor of S11n Node (or S-Node), asthat term �ts in better with this library. 21

• Node Traits (s11n::node_traits<NodeType>)- an interfae for interating with S11n Nodes. Con-eptually similar to the standard library's har_traits<har_t>. See setion 6.1.
• serializable (with a small �s�)- the property of being able to be saved and to restore state. For example,to allow persistent objet states aross appliation sessions, network onnetions, et.
• Serializable Type or Serializable (with a big �S�) - any type for whih s11n reognizes a SerializableInterfae, either implemented diretly by the Serializable type or via a Serialization Proxy. Serial-izables save their state in S-Nodes during serialization and restore their state from S-Nodes duringdeserialization.
• Serializable Traits (s11n::s11n_traits<SerializableType>) - a type for enapsulating s11n-relatedinformation about a Serializable Type. See setion 6.2.
• Serializable Proxy or Serialization Proxy - a funtor (optionally two) whih registers with s11n asbeing the handler for de/serialization of a given type. By extension, the proxied type is onsidered to bea full-�edged Serializable. All de/serialize operations s11n performs on behalf of the proxied typeare delegated to the proxy type. This allows, amongst other things, transparent serialization of 3rd-partylasses and drastialy simpli�es the serialization of ontainers.Proxies are not Serializables - they are, more properly, the implementation for a Serializable's serial-ization operators. (Got that?)
• serialization, to serialize - several meanings:� To save the state of a Serializable . In this library that is aomplished by storing the state in anSNode, whih is oneptually idential to storing a opy of it in an STL ontainer.� To save an SNode to a data stream via a Serializer. Stream-based serialization is normally alled�saving�.� Several other subtle, ontext-spei� meanings.
• deserialization, to deserialize - the onverse of serialize:� To restore the state of a Serializable, presumably using data from an S-Node.� To load an S-Node from an input stream. Stream-related deserialization is normally alled �loading�.
• de/serialization or de/serialize - shorthand forms of �deserialization and/or serialization� and �deseri-alize and/or serialize.�
• Load/Save vs De/Serialize - By s11n onvention, the words "save" and "load" are used when dealingwith streams or �les, and "serialize" and "deserialize" are used when dealing with saving or restoring thestate of a Serializable to or from an S-Node. Sometimes the words are used interhangeably and, whileit is tehnially orret in many ases, suh usage is onsidered �marginally ambiguous� in s11n.
• Serializer - a type responsible for onverting S-Nodes to and from a spei� grammar (i.e., a dataformat). For example, some Serializers use an XML dialet while others use ustom formats. Theoretially,any data whih an be strutured in a DOM-like fashion (even if only via logial transformation) an behandled by Serializers. In s11n Serializers are also always Deserializers (at least logially, in terms of theAPI interfae).
• serialization operators, de/serialize(), or Serializable Interfae - generi names for a pair ofde/serialize funtions whih Serializables and Serializable Proxies have, regardless of the atual namesor argument types of the funtions. Sometimes also used to refer to the de/serialize funtions within otherinterfaes, suh as ore library's de/serialize() funtions.
• de/serialization operations - generi terms enompassing any funtions whih trigger a hain ofevents whih lead through the s11n de/serialization ore (and presumably bak). In plain English:s11n::de/serialize<>(), and related funtions, fall into this ategory. If we needes a really tehni-al de�nition, this would be pretty lose to orret: any operations whih end up forwarding through thes11n_api_marshaler<> (SAM) internal interfaes (setion 17).
• Default Serializable Interfae - Serializables whih implement both of their serialization operators asoperator() , and whih follow the onventions laid out in setion 5, are said to implement the DefaultSerializable Interfae. Types whih do this do not need to tell s11n what their serialization interfae lookslike - we will be able pik them up automatially.22

• Classloader or Fatory - an interfae used to load objet instanes based on a lookup key, potentiallyinluding dynami searhes for new types (e.g., via DLLs). In s11n this lookup key is onventionally thestring form of a lass' name. Classloaders are used during deserialization to load the proper type for agiven node (this is neessary in order to support polymorphi deserialization). The s11n lassloader hassupport for loading lasses from DLLs, but that feature is not overed muh in these dos beause itsoperation is transparent to the API. Classloaders work primarily not o� of spei� �onrete� types, buto� of Interfae Types, as desribed brie�y below. For more detail than you probably want to knowabout these, see the summary paper at: http://s11n.net/papers/#lassloading_pp
• T's lassloader, or the T lassloader - Refers the the lassloader (fatory) whih uses type T as its pointof referene for registering and loading lasses. More spei�ally, it (urrently) means s11n::fa::fatory_mgr<T>,though the exat fatory implementation whih s11n uses is not a de�ned part of the publi interfae. Forproper polymorphi deserialization, subtypes of T should be registered with T's lassloader, regardless ofwhether or not they also register with their own lassloader (e.g. fatory_mgr<SomeTSubType>).
• Interfae Type [note: in s11n 1.0 these are referred to as Base Types, whih is marginally inorretand de�nitely more ambiguous than Interfae Type.℄ - in s11n, espeially in the ontext of a lass-loader, this is used to mean the base-most type whih a given lassloader �knows about.� This typeis used for registering subtypes of Interfae Types with the Interfae Type's Serializable Interfae,and is ritial for lassloading purposes. In a broader sense, Interfae Types are used as ontexts formarshaling the s11n and lient-side Serializable Interfaes into internally-ompatible forms. Theabstrat topi of Interfae Types is overed in more detail in a paper written as part of this projet:http://s11n.net/papers/#lassloading_pp
• Streamable [Types℄ - In the ontext of s11n this means any type for whih ostream<< and istream>>operators an be applied to suessfully save and restore the state of an objet of that type. This inherentlyinludes all PODs, std::string (though with some aveats involving whitespae handling), and any lient-supplied types whih meet these onditions. This also impliitely exludes all pointer-quali�ed types (butnote that s11n often handles objets of types (SerializableT) and (SerializableT *) equally). Serializablesare not impliitely Streamable, as s11n does not deal with streams at its ore, and thus the Serializableinterfae is stream-ignorant.
• SAM, the s11n API Marshaler - SAM is the layer of s11n responsible for ating as a ommuniationhannel between s11n's internal API and any lient-side APIs, inluding, but not tehnially limitedto, forwarding requests to Serializable Proxies. SAM allows lients to transparently proxy the s11ninterfaes, as overed in setion 17. Clients will almost never have to know about SAM, but it does playa signi�ant role internally.
• ore s11n or the s11n ore/kernel - These are generi terms referring to the ore-most funtionsin s11n. Spei�ally, this is limited to the lassloader-related funtions in the s11n::l namespae,the s11n::de/serialize() variants, and s11n::s11n_api_marshaller<>. Everything else, from theSerializers to the s11nlite interfae, is built around this tiny ore.
• POD - Plain Old Data. In s11n this term does not have quite the same meaning as the C++ standardapplies to it: we use it only to mean basi, built-in data types (int, har, double), plus std::string.In the C++ standard the term does not inlude std::string but inludes struts whih ontain onlyPODs [CTM2005℄, and thus our usage inludes a subset of the standard's de�nition. Common usage ofthe term does not inlude struts, so i don't feel bad about this slight mis-use of the term.Did you get all that? Don't worry - you don't need to memorize this list, but if you �nd yourself onfused by aterm in this doumentation, try looking it up in the list above.Using the library is not as omplex as the above list may imply, as the rest of this doumentation will attemptto onvine you. Yes, the details of serialization and lassloading, espeially in a lower-level language like C++,are downright sary. s11n tries to move the lient as far away as possible from those sary details, and it goes togreat pains to do so. However, some understanding of the above terms, and their inter-relationships, is ritialfully understanding the library.Some non-s11n-related terms show up often enough in this doumentation that readers not familiar with themwill be at a disadvantage in understanding the doumentation. Brie�y, they are:
• i.e. - �in other words� or �in e�et� (from the Latin id est21).21http://www.wsu.edu:8080/~brians/errors/e.g.html 23

• e.g. - �for example� or �example given� (from the Latin exempli gratia).
• Algorithm - we use the same general meaning as in ommon STL usage: a omputation, normally onewhih is generiized in form suh that it an be applied to a wide range of types whih meet a publishedset of onventions for that algorithm. Like funtors, understanding algorithms is essential to e�etivelyusing the STL, and the two often go hand-in-hand.For numerous well-published examples of algorithms see those in the STL itself, de�ned in the ISO-standard <algorithm> header �le. s11n inludes many serialization-related algorithms and funtors.
• Funtor - a funtion or a strut/lass type implementing funtion-all semantis. i.e., a type implementingone or more operator()member funtions. Funtors are a ornerstone of all STL-style development, andmust be well understood before one an make full use of s11n, or the STL for that matter.
• ODR, the One De�nition Rule - C/C++'s rule whih, put simply, basially states that no type maybe de�ned (i.e., implemented) more than one time in any given binary or library. This is not an arbitraryrule, but a tehnologial limitation, akin to std::map being able to ontain no more than one objet witha given lookup key. In any ase, it's rather a sane behaviour, if you ask me.In s11n ODR is an oft-heard term beause its template-based nature, in partiular its use of marosand header �les to generate �behind-the-senes� utility and marshaler lass template speializations atomplile-time, makes it quite sueptible to ODR violations if some simple, non-obstrutive rules are notfollowed (as desribed elsewhere in this manual). (Trust me, one you realize how it works this is never apratial hinderane, and it's trivial to avoid one you seen it happen it a few times and understand itsnature.) With the release of version 0.8.0, all ommonly-ourring ODR-related problems are believed tobe solved. (i haven't personally seen an s11n-aused ODR violation sine the 0.8.x series, exept when ihave inorretly double-registered a proxy in the same soure �le.)
• Style Points(SP) - an abstrat, often poorly-understood and underestimated, unit of measurement of�how muh Style� a partiular piee of ode exhibits. Poorly-designed ode gets minus points, whereasespeially lever ode may get plus points (or may, as is oasionally the ase, atually be too lever forits own good, and get no points at all). The measurement system for Style Points is not standardized.One ommon way for one developer to ommuniating that s/he wishes to assign SP to, or substrat SPfrom, another developer is to say say something like, �+1�, or �-1�. A phrase like, �ool ode!� impliitelyarries at least one SP, whereas the phrase, �great hak!� or �you rok!� is generally worth several SP (atleast from the reeiver's perspetive).It is signi�ant to keep in mind that SP delared by non-developers simply go to /dev/null - they neitherount nor disount the reipient, exept possibly in his or her own ego22. Additionally, the amount of SPa given reward or pentalty gives or takes may be adjusted by the relative experiene levels or reputions ofthe giver and reeiver. e.g. a 6-month C++ newbie giving +1 SP to a 10-year veteran is not worth nearlyas muh the other way around.The giving of Style Points is sometimes referred to as �shenking� (past tense: shenked or shenkt),derived from the German verb shenken, meaning �to give [free of ost/as a gift℄.�As software developers mature23 they invariably begin, at some inde�nate point, to onentrate on Styleas muh as they do on the nature of the algorithms they develop. This is a natural part of a developer'sgrowth as a professional, just as it is in any �eld, and thus experiened oders an generaly �pik up SP�muh more readily than greenhorns an.4.2 The O�ial Grossly Oversimpli�ed Overview of the s11n arhiteture�Like your srotum, here it is in a nutshell...�Bloodhound Gang (the band, not the TV show or hildren's books)s11n is built out of several quasi-independent sub-modules. �Quasi-independent� meaning that they mostly relyon onventions developed within other modules, but not neessarily on the exat types used by those modules.Suh design tehniques are a ornerstone of templates-based development, and will be a well-understood prinipalto STL oders, thus we won't even begin to touh on its bene�ts, uses, and multitudinous impliations here.Shameless Plug24:22And we programmers, by and large, have a repution for living the majority of our lives in exatly that spae. ;)23As developers, of ourse, not neessarily as human beings.24Suh a plug is typially worth approximately -1 Style Point, a ost from whih this plug is not exempt. In fat, these doshave so many shameless plugs and outbursts of jubileaum that i'll go ahead and dok the doument as a whole -10 SP. ;)(i wouldn't be preahing it if i didn't believe honestly it, though, so the devotion's gotta be worth a ouple of SP!)What a Style Point? See setion 4.1. 24

This partiular aspet of s11n's design is ritial to s11n's �exibility, and is one of the implemen-tation details whih atapults it far ahead of traditional serialization libraries. It is this aspetwhih allows, for example, lient libraries to transparently adapt this framework's interfaes to thelient's interfae(s), and to transparently adapt other lients ' Serializable interfaes (and, addition-ally, transparently adapt to them). In most other libraries this model is the other way around: thelient has to do all adapting himself. Consider, e.g. that any type an onverted to a Serializablewithout, e.g. sublassing anything at all. That is, a lient an have 1047 di�erent lasses - eah withtheir own serialization interfaes - and they an all transparently de/serialize eah other as if theyall had the same funtion-level interfae25.Enough plugging. Let's brie�y go over s11n's major omponents, in no partiular order:
• Classloader - a fatory for reating lasses based on lookup keys (e.g. lass name). This is a ritialelement for proper polymorphi deserialization, partiularly when loading lasses on-the-�y from externalsoures (e.g. a DLL).
• s11n::s11n_node - this is the referene implementation for the S11n Node (a.k.a. Data Node) onept.This is supported by all of supplied node-related algorithms and funtors, though they atually have nodiret dependenies on it. It is onsidered poor style use all the Data Node API diretly from lient ode- using the s11n::node_traits<NodeType> interfae is highly preferred, for ompatibility with 3rd-partynode types and for future ompatibility with new node types. For example, s11n 1.0.x uses a di�erent nodetype (s11n::data_node), and using the node_traits<> to aess nodes makes this transition transparent.
• Core de/serialize() funtions - a set of funtions whih hide the API marshaling that goes on fortranslating arbitrary Serializable interfaes into something eah other an use. At the appliation level,these funtions typially make up the heart of the lient-side s11n interfae, whereas at the library- andlass- levels the available funtors and algorithms a muh more likely to play a heavy role. It may beinteresting to note that the ore API is made up of less than 50 lines of ode.
• Serialization API marshaler (SAM)- the ore de/serialize funtions pass all of their request throughthis internal layer. These types an be swapped out transparently, ustomizing the serialization interfaeon a per-base-type ase. This feature is used, for example, to diret serialization through SerializableProxies, or to implement pointer-to-referene type translation as needed. These marshalers �lter everysingle de/serialize all made via the ore, and thus the ability to replae them on the lient side gives lientode 100% plug-in aess to the framework's de/serialization ore, without having to know the details ofhow everything is marshaled. SAMs an then do almost whatever they like with the API, exept hangeparameter onstness for nodes and serializables - they may add arguments as they wish! This an be used,e.g. to implement framework-enfored data versioningSAM is overed in setion 17.
• Type Traits (setion 6) - as of version 0.9.3 these types are used to enapsulate interfae informationfor Serializables and Data Nodes. Users of the STL may be familiar with standard traits types suh asiterator_traits<> or har_traits<>. The s11n traits types, s11n_traits<> and node_traits<>, playsimilar roles as those types do in the STL. Note that s11n_traits<> and SAM overlap is some ways, asdesribed in setion 17.
• Serializers - these objets are responsible for marshaling S-Nodes to and from spei� �le formats (alsoknown as grammars). The library urrently s11n ships with several Serializers, supporting a variety ofdata formats. All Serializers shipped with s11n are available to s11nlite, but s11nlite restrits itself, forpurposes of saving data, to one of them (whih one it uses is not stritly de�ned by the interfae, andmay easily be de�ned by the user). s11nlite does not need to be told what format to use for loading, asthat is determined dynamially (see setions 14.1.1 and 14.1.4).
• s11nlite - a tidy little interfae providing a wrapper around the above layers, providing for most ommonlient objet serialization needs. Intended also as a sample lient-side interfae implementation. Thatis, by implementing something like s11nlite a projet an ompletely hide its objets from any diretknowledge of libs11n, helping to support the �non-intrusion prinipal� whih s11n works hard to uphold.For an example of this, see the P::SIO module in the P::Classes 2.x soure tree (via http://plasses.om),where we have implemented a ustom s11nlite-like interfae to suit the needs of that projet better.
• Generi helper funtors and algorithms to support internal and lient-side manipulation of Data Nodesand Serializers, also helpful for s11nlite.25Whereas they do all impliitely share a ommon logial interefae - that of a Serializable, as de�ned by s11n's onventions.25

There are also a number of less-visible support layers/lasses/funtions. See the README �le for an overviewof where eah part of the library lives in the soure tree. The API dos reveal the whole spetrum of availableobjets (many of whih are internal or speial-ase, and an be ignored by lients).Some of the sub-sub layers exist purely as ode generated by maros (suh as the lassloader registration maros),e.g. to install lient-spei� preferenes into the library at ompile-time.4.3 Proess Overview4.3.1 SerializationIn the abstrat, this is normally what happens for a serialization operation:1. Client requests the serialization of a Serializable. This is initialized by passing the Serializable into a dataontainer (e.g. an S-Node) via the s11n serialization interae (e.g. s11nlite::serialize()).2. s11n proxies the request to the registered Serializable Interfae and passes the target S-Node and soureSerializable to the registered interfae.3. The serialize operator's implementation should save the Serializable's state into the data node. It returnstrue on suess and on error returns false or throws an exeption.4. s11n returns a data node to the lient, presumably populated with the data from the Serializable.5. Client selets a Serializer type and sends the Node to it, along with a destination stream/�le.6. Serializer formats the Node into the Serializer's grammar.7. The lient gets noti�ation of suess or failure (true or false, respetively, or potentially an exeption).Reursive serialization an be triggered, e.g. in a serialization operator's implementation where a hild Serial-izable is serialized.Note that in s11nlite the Serializer seletion steps are abstrated away to simplify the interfae.4.3.2 DeserializationA lient-initiated deserialization request in s11n normally looks more or less like this:1. Client requests the deserialization of a Serializable objet from a data stream/�le.2. s11n analyses the stream to �nd a mathing Serializer lass, then passes the stream o� to the that lass.3. The Serializer parses the stream into a tree of S-Nodes and returns the root node to s11n. Obviously,if there is no Node then proessing stops here with an error (typially, false or 0 is returned, though anexeption may also be thrown).4. s11n looks at the root Node to determine whih Serializable Type to instantiate. If it fails to �nd the lass,or annot instantiate the requested type, proessing stops with an error (typially false or 0 is returned,though an exeption may be thrown).5. s11n marshals the data-to-be-deserialized to the registered (De)serialization Interfae for Serializable'stype.6. Deserialize operator's implementation should restore the Serializable's state from the soure Data Node.If it returns false or throws then proessing stops. In the ase of an error it may do post-error leanup onthe objet to prevent leaks of resoures alloated during deserialization.7. s11n destroys the now-unneessary S-Node tree.8. s11n returns a (Serializable *) to the lient, whih the lient now owns.The interfae also supports deserializing nodes diretly into arbitrary Serializables, e�etively bypassing the�rst four of the above steps and not returning a pointer to a new objet (it uses the target objet the user givesit). Also, lients may stop at point 7 if they are only interested in the raw data, as opposed to wanting theobjets the data represent. For example, the s11nonvert and s11nbrowser appliations (setions 21.1 and21.2) never rely on a spei� Serializable Types, and only work with S-Node trees.26

4.4 Node Names and Property Key naming onventions (IMPORTANT!)When saving data eah node is given a name, fethable via node_traits<NodeType>::name(). Node namesan be thought of as property keys, with the node's ontent representing the value of that key. Unlike propertykeys, node names need not be unique within any given data tree. All nodes have a default name, but the defaultname is not de�ned (i.e., lients an safely rely on new nodes having some Serializer-parseable name).In terms of the ore s11n framework, the key/node names lient ode uses are irrelevant, but most data formatswill require that they follow the syntax onventionally used by XML nodes and in most programming languages:Alphanumeri and undersores only, starting with a letter or undersore .Any other keys or node names will almost ertainly not be loadable (they will probably be saveable, but thedata will be e�etively orrupted). More preisely, this depends on the data format you've hosen (some don'tare so muh about this detail).Numeri property keys are another topi altogether. Stritly speaking, they are not portable to all parsers. Morespei�ally, numeri keys (even �oating-point) are handled by most of the parsers supplied with this library(even funxml and simplexml, but not expatxml), but the data won't be portable to more standards-ompliantparsers. Thus, if data portability is a onern, avoid numeri property keys and node names altogether.Serializable lasses normally do not need to deal with a node's name() exept to de/serialize hild Serializables.There are many ases where lient ode needs to set a node name manually, but these should beome lear tothe oder as they arise.4.5 Overview of things to understand about s11nAfter reading over the basi library onventions, users should read through the following to get an overview ofwhat topis whih should be understood by by lients in order to e�etively use the s11n framework. Muh ofit is over-simpli�ed here - this is an overview, after all. Additionally, some of it is true for s11nlite, but onlypartially true for ore s11n.
• S-Nodes are the basi types used to store arbitrary key/value pairs and hild objets. They follow aDOM-style interfae, so their usage is fairly straightforward. The ore library and generi algorithmssupport any S-Node type whih an be proxied via s11n::node_trails<> (setion 6.1).
• The entire lient-side interfae for loading and saving all objets is delared in <s11n.net/s11n/s11nlite.hpp>,in the s11nlite namespae. The ore ode, and many node-related funtors and algorithms are availablein these namespaes: s11n, s11n::list, s11n::map, s11n::va. That said, lients may diretly use theore s11n, bypassing s11nlite ompletely, but using s11nlite is highly reommended.
• s11n is very ontainer/funtor/algorithm based, so its usage should be familiar to experiened C++ users(espeially users of the STL).
• s11n does not enfore a spei� Serializable interfae, but inherently supports the so-alled Default Seri-alizable Interfae. Client-side lasses whih implement the default Serializable interfae (desribed later)need no speial registration as being Serializable types. Custom interfaes and proxies are easy to install,as desribed later.
• s11n's ore is not stream-oriented, but ontainer-oriented. That is, we serialize data to and from ontainers,and those ontainers get formatted to (or from) streams by Serializers. Thus s11n doesn't really are about�le formats - its ore interfae is 100% data format agnosti. For saving, lients must delare a format,but loading is dispathed to the appropriate parser depending on the ontent of the stream. That said,s11nlite uses a default Serializer, so lients who don't are about the underlying data format need neverworry about this highly overrated detail.
• Classloaders and their �InterfaeType� types are important onepts to understand in s11n, mainly fortemplate-types reasons. They are overed in detail in the lassloader doumentation, and will be explaineda bit later on. All types whih are to be deserializable must be registered with an �appropriate lassloader.�What that really means, in all its tehnial glory, ould easily turn into whole doument! Be assured thatthis do will try to tell you what you need to know in order to register your lasses (it is 100% non-intrusiveon lasses). The hope is that most s11n use ases won't require muh understanding of the subtleties ofthe lassloader framework. 27

4.6 Notes on error/suess values (i.e., justifying the bool)s11n uses, almost exlusively, bool values to report suess or failure for de/serialize operations. The reasonsthat bool was hosen are detailed, but here's a summary:
• SOME error value is needed. Integer values must either be mapped to a known set of error odes or beinterpretted lient-dependently. Neither of those approahes are terribly suitable for s11n, largely due toits inherently abstrat and generi nature.
• Based on usage history, i felt it was unneessary to employ exeptions as the standard means of errorreporting. (i partially regret this, but still generally feel that imposing exeption onventions on thelients would not be a good idea.)
• If we onsider the standard ostream<< and >>istream operators for a moment: yes, it is tehniallypossible to hek for an error after an extration/insertion by heking the stream's state, but in pratiethis is almost never done, at least for ostreams. Thus, i/ostream error heking onventions are oddlysimilar to s11n's, probably due to their logially similar roles as i/o marshalers.
• Related to the previous point: s11n's ore is ontainer-based, and how many oders hek for properinsertion after a push_bak() or insert()? None, beause those operations (perhaps only by onvention?)simply do not fail.
• i atually knew a oder one who (in Java) hose to return the String �suess� to indiate suess andnon-�suess� to indiate failure. i �gure that's also not appropriate for s11n. ;)s11n's oneptual anestor, Rusty Ballinger's libFunUtil, uses void returns for its de/serialize operations, whihmeans that lients essentially an't know if a de/serialize fails. When designing s11n i strongly felt that lientsneed at least add some basi level of error detetion, and �nally settled on plain old booleans. There is in fata omi irony in that deision: it is so rare that a de/serialization fails, that a void return type would do justas well for 99% of ases!The seeming shortage of de/serialization failures an primarily be attributed to the following:
• The vast majority of the lient-side part of s11n doesn't work with i/o streams (in partiular, with �les).
• The points at whih Serializables are given data nodes are far away (in interfae terms) from the streamoperations. Stream operations are, by far, the most likely point of failure in a serialization library (badinput format, �le does not exist, out of disk spae, write aess fails, NFS onnetion ut, blah blah blahyada yada yada).
• The s11n ore is ontainer-based, and ontainer insertions and extrations, as a general rule, do not fail.Also, ontainer searhes only fail in the sense that the sought-after data simply isn't there.
• In the event of a stream- or grammar-level input failure the proess will fail early enough that no deserializeoperators are be alled, so they an't very well fail, an they?[... muh later ... ℄While returning a bool for a single de/serialization operation still seems reasonable, the logi behind it ratherbreaks down when a tree of objets is serialized. If any given objet returns false the the serialization as a wholewill fail. This implies that whole trees an be spoiled by one bad apple (no pun intended). In a best-ase senarioonly one branh of the tree would be invalidated, but... is that a good thing, to have partial data saved/loadedand have it �agged as a suess? Of ourse not, thus s11n must generally onsider one serialization failure in ahain of alls to be a total failure. This is its general poliy, though lient/helper ode is not required by s11nto enfore suh a onvention26.Furthermore, some spei� operations, suh as using std::for_eah() to serialize a list of Serializables, may[will℄ have unpreditable results in the fae of a serialization failure. Consider: in that ase there is no reasonableway to know whih hild failed serialization, as for_eah() will return the overall result of the operation. If thefuntor performing the serialization ontinues after the �rst error it will produe muh di�erent (but not nees-sarily more valid) results than if it rejets all requests after a serialization failure. The subnode_serialize_f<>lass , for example, refuses to serialize further hildren after the �rst failure, but this is purely that lass'onvention, not a rule.Ah... there is no 100% satisfying solution, and bools seem to meet the middle ground fairly well.[... muh later ... ℄As of version 1.1 we've introdued proper exeption handling: more info about this is in setion 16.26Espeially when s11n's author annot even deide if s11n urrently does The Right[est℄ Thing ;). It's mainly a philosophialquestion at this point, and those are often the most di�ult ones in software design. :/28

4.7 s11n and Patterns�Patterns� is a term we've all ome to know and love over the past deade. While i am no Pattern Guru, andannot name more than a ouple o� the top of my head, i thought it might be interesting to list the majoromponents of the library and the Patterns they [would seem to℄ follow. This might help some users understandthe library somewhat better...4.7.1 The oreThe ore of the library is essentially a Proxy. All that it does is use templates to selet types, and then all aknown interfae in that type, passing on the aller's arguments and returning the same value as the proxy.4.7.2 ClassloaderThe lassloading layer is, quite naturally, a Fatory : it maintains a mapping of keys to funtions whih returnnew objets.4.7.3 ProxiesProxies are, quite non-intuitively, normally more like Visitors than Proxies. This really depends on the imple-mentation, but in pratie most are Visitors. The original design goal of the s11n proxies was to do only APImarshaling (proxying), but it quikly beame lear that they ould do muh more than that. By that time,though, the term Proxy was already in use and there was no reason (at the time) to think it wasn't appropriate.Proxies normally implement one of three approahes:1. They simply pass on their arguments to a known Serialization Operator in the Serializable type theyproxy. In this sense they are naturally Proxies.2. They implement the de/serialization logi for a Serializable type. In this sense they ould be onsideredVisitors.3. They pass on all arguments/return values to/from algorithms whih perform #2. Again, in this sensethey are Proxies.For you Pattern Gurus out there: is there a separate Pattern for API Marshaler, or is that just a fany wordfor Proxy?4.7.4 i/oThe i/o layer is oneptually very similar to the proxying layer, though with muh less indiretion going on.This layer would appear to be mainly a Visitor, at least for output purposes, but there might be loser Patternmathes, so to say. In some sense it is also a Fatory of S11n Nodes.4.7.5 s11nlites11nlite is a lassi Wrapper, whih probably also falls into the ategory of Proxy or Marshaler.5 Serializable Interfaes: overview and onventionsRather than overload you with the details of this right up front, we're going to grossly oversimplify here - tothe point where we're almost lying - and tell you that the following is the interfae whih s11n expets fromyour Serializable types.Eah Serializable type must implement the following two methods:A serialize operator:[virtual℄ bool operator()(NodeType & dest) onst;A deserialize operator: 29

[virtual℄ bool operator()(onst NodeType & sr);It is important to remember that NodeType is atually an abstrat desription: any type meeting s11n's S-Nodeonventions will do. s11nlite uses, unsurprisingly, s11n::s11n_node as the referene implementation for theNodeType onept.The astute reader may have notied that the above two funtions have the same signature... almost. Theironstness is di�erent, and C++ is smart enough to di�erentiate. The s11n interfae is designed suh that it isvery di�ult for lients to have an environment where ambiguity is possible.These operators need not be virtual, but they may be so. Serializable proxy funtors, in partiular, are knownfor having non-virtual serialization operators, as are, of ourse, monomorphi Serializable types.The truth is that s11n only requires that the argument be a ompatible data node type and that the onstnessmathes. s11n's ore doesn't are what funtion it alls, as long as you tell it whih one to use - how to tells11n that is explained in setion 12.Trivia:When the de/serialize operators are implemented in terms of operator(), with the above-shownsignatures, a type is said to onform to the Default Serializable Interfae.5.1 Serialize Operator onventions
• If the type is polymorphi, itmust set its lass name in the node, e.g. using node_traits<NodeType>::lass_name().This is urrently the only 100% reliable way to get the proper lass names of your Serializable subtypesfor use during during deserialization. (This is made learer later via examples.) Monomorphi types anbe reliably given a name by the framework, and normally no lass name needs to be alled for them (SAMdoes this - setion 17, and proxies sometimes re-set it). If this operator alls a parent type's serializationoperator, the lass name should be set after alling the inherited operator, suh that the subtype's lassname is stored.
• Should save the objet's state to the destination node, presumably using the destination's publi APIand the s11n funtors/algorithms designed for suh operations. State-saving may ontinue reursively forSerializable hild objets.
• Returns true on suess, false on error. May throw or propagate arbitrary exeptions.5.2 Deserialize Operator onventions
• Should restore the state of an objet via the node it is given, plus any sub-nodes, if needed. Staterestoration may ontinue reursively for olleting Serializable hild objets.
• The ore library generally makes sure that nodes are passed to objets of the types whih serialized thenodes, but users may �brute-fore� any node into any Serializable if they wish to. It is not the job of thedeserialize operator to hek that it has reeived a node for the proper type. It may do so, if it wishes,but this is out of line with s11n onventions, and not reommended.
• The ore library only alls the deserialize operator one time per objet, but it is possible that lient odewill trigger it multiple times for a given objet. Thus any lists, pointers and whatnot should be leanedup before restoring an objet's state, to avoid leaking resoures or dupliating ontainer entries. Moreinformation about this an be found in setion 19.
• Returns true on suess, false on error. May throw or propagate arbitrary exeptions. If it throws, itshould ensure that it does not leak any resoures alloated as a side-e�et of deserialization, inludingresoures alloated by reursive deserialization. (This is not as di�ult as it sounds: see setion 16.)5.3 Data Node lass names (IMPORTANT!)Let us repeat this many times:while(! this->gets_the_point()) 30

std::out << �The importane of lass_name() in the s11n framework annot be under-stated.\n�;(Don't be ashamed if your loop runs a little longer than average. It's a learning proess.)lass_name() is part of the node_traits interfae, and is used for getting and setting the lass name of thetype of objet a node's data represents. This lass name is stored in the meta-data of a node and is used forlassloading the proper implementation types during deserialization. By onvention the lass_name() is thestring version of the C++ lass name, inluding any namespae part but minus any quali�ers like pointernessand template parameters, e.g. �foo::bar::MyClass�. The library does not enfore this onvention, and thereare indeed ases where using aliases an simplify things or make them more �exible. See the lassloaderdoumentation for hints on what aliasing an potentially do for you.Client ode must, unfortunately, all lass_name(), but the rules are very simple:
• Serializables (or their proxies) must set the target node's lass_name() in their serialize operator (notthe deserialize operator), passing it the string name whih the lient ode will later expet to be able toload the lass with. When using the default Serializable registration tehniques, you should pass the lassname de�ned in the S11N_TYPE_NAME maro passed in to the registration supermaro (setion 12.6).
• If a Serializable lass inherits serializable behaviour from a parent type, the sublass must set lass_name()after alling the parent's implementation of the Serialize Operator to ensure the proper sublass type getsinto the node. Also, if the parent's operation fails, the hild should normally immediately return false.Some algorithms parse data diretly from data nodes, irrespetive of the node's lass_name(), and this isperfetly kosher. One example is the de/serialize_streamable_xxx() family of funtions: they use �raw�data nodes, to avoid a number of problems involved with registering proper lass names for arbitrary ontainers'lassloaders.For more on lass names, inluding how to set them in a uniform way for arbitrary types, see setion ??.5.3.1 Example of setting a node's lass nameHere's a sample whih shows you all you need to know about the bastard hild of the s11n framework,lass_name():Assume lass A is a Serializable Interfae Type using the Default Serializable Interfae and B is a subtype ofA. In A's serialize (not DEserialize) operator we must write:s11n::node_traits<DataNodeType>::lass_name(node, �A�);In B's we should do:if(! this->A::operator()(node))27 return false;s11n::node_traits<DataNodeType>::lass_name(node, �B�);It is not stritly neessary that a subtype return false if the parent type fails to serialize, but it is a good ideaunless the subtype knows how to detet and reover from the problem.Follow those simple rules and all will be well when it omes to loading the proper type at deserialization time28.To extend the above example, after the node ontains B's state, we an do this:A * a = s11nlite::deserialize<A>(node);(Note that we all deserialize<A>() with A beause that's the Interfae Type whih registered with s11n.)That reates a (B*) and deserializes it using B's interfae. Why? Beause node's lass_name() is �B�, and theA lassloader will load a B objet when asked to (assuming it an �nd B - if it annot it will return zero/null,or possibly throw).Let's quikly look at two similar variants on the above whih are generally not orret:B * a = s11nlite::deserialize<A>(node);27See setion 5.4 for why you should never diretly all a Serializable's serialization API. This partiular ase is one of two whihsimply annot be avoided.28That is, assuming the subtypes are properly registered with the lassloader.31

That won't work beause there is no impliit onversion possible from A to B. It will fail at ompile time. Thatone is straightforward, but the details for this one are fairly intriate:B * a = s11nlite::deserialize(node);This will not fail to ompile, but will probably not do what was expeted. In this example B is now the InterfaeType for lassloading/deserialization purposes, whih has subtle-yet-signi�ant side-e�ets. For example, if B isnever registered with the B lassloader then the user will probably be surprised when the above returns 0 insteadof a new, freshly-deserialized objet. If B is indeed registered with B's lassloader, and B (as a standalone type)is reognized as a Serializable, then that all would work as expeted: it would return a deserialized (B*).5.3.2 Using loal library support for lass_name()Some heavily objet-oriented libraries, like Qt (www.trollteh.om), support a polymorphi lassName() fun-tion, or similar, to feth the proper, polymorphi lass name of an objet. If your trees support this, takeadvantage of it : set the node's lass name one time in the base serialization algorithm (your proxy or thebase-most implementation of your hierarhy) if you an get away with it! The sad news is, however, that thevast majority of us mortals must get by with doing this one part the hard way. :/ There are atually interestingmaro/template-based ways to ath this for monomorphi types, but no 100% reliable way to ath them forpolymorphs has yet been disovered. (Hear my ries, oh mighty C++ Standardization Commitee!)This approah is demonstrated in the s11n sample soure ode, in sr/lient/sample/lassname.pp.5.4 Cooperating with other Serializable interfaesDespite ommon oding pratie, and perhaps even ommon sense, lient Serializables should not - for reasonsof form and ode reusability - all their own interfaes' de/serialize funtions diretly! Instead they should usethe various de/serialize() funtions. This ensures that interfae translation an be done by s11n, allowingSerializables of di�erent anestries and interfaes to transparently interoperate. It also helps keep your odemore portable to being used in other projets whih support s11n. There are exatly three known ases wherea lient Serializable must all its diret anestor's de/serialize methods diretly, as opposed to through a proxy.The �rst two are alling the parent implementation in their serialize and deserialize implementations. In thosetwo ases it's perfetly aeptable to do so, and in fat ould not be done any other way. The �nal ase is whenyou want or need to bypass the internal API marshalling. Any other usage an be onsidered �poor form� and�unportable.� If you �nd yourself diretly alling a Serializable's de/serialize methods, see if you an do it viathe ore API instead (tip: you probably an29).For example, instead of using this:myserializable->serialize(my_data_node); // NO! Poor form! Unportable!use one of these:s11nlite::serialize(my_data_node, myserializable); // YES! Friendly and portable!s11n::serialize(my_data_node, myserializable); // Fine!Note that there are extremely subtle di�erenes in the alling of the previous two funtions: the exat templatearguments they take are di�erent. In the ase of monomorphi types C++'s automati argument-to-templatetype resolution su�es to selet the proper types, so speifying them via serialize<X> syntax is unneessary.When serializing monomorphs, being expliit should never be required. When using polymorphs, it may beneessary to expliitely give the base-most (interfae) type, so that the subtype's type is not aidentally seleted(whih will lead to no good). It is always safe to do so, in any ase, and s11n's author enourages always beingexpliit in this regard, to avoid potential onfusion or subtle errors downstream.In terms of Style Points (setion 4.1), alling a Serializable's API diretly, exept where spei�ally neessary,is immediately worth a good -1 SP or more, and may forever blemish one's reputation as a generi oder. To beperfetly lear, though, alling the loal APIs diretly does not have any diret e�et on s11n. This onventionis primarily to help ensure portability of serialization funtionality between disparate s11n-enabled types.29Alas, unless, you have some unusual needs, e.g. you need ustomized reursive de/serialization to go around the internalmarshaling proess. 32

5.5 Member template funtions as serialization operatorsIf a Serializable type implements template-based serialization operators, e.g.:template <typename NodeType> bool operator()(NodeType & dest) onst;template <typename NodeType> bool operator()(onst NodeType & sr);and they use the s11n::node_traits<NodeType> interfae to query and manipulate the nodes, then theirSerialize methods will support any NodeType supported by s11n. Note that s11nlite hides the abstratness ofthe NodeType, so users wishing to do this will have to work more with the ore funtions (whih essentiallyonly means using NodeType a lot more, e.g. funtioname<NodeType...>(...)).Using member template funtions has other impliations, and should be well-thought-out before it is imple-mented:
• May require inluding (no pun intended) the implementation ode in the header �le.
• Compilers do not ompletely hek template funtions until they are alled, so there might be a ompile-error-in-waiting as oders tweak bits without testing them (what, me? ;).
• Member template funtions annot be virtual. (This is a C++ restrition, not s11n-imposed.)Despite those seeming limitations, experiene suggests more and more that templated de/serialize operatorsgenerally o�ers more �exibility than non-templated. In the ase of monomorphi types and proxies, there isalmost never a reason to not make these operators member templates, and there are several good reasons to doso:
• The lass an work with any Data Node type, instead of just, e.g. s11nlite::node_type.
• This is the only known e�etive way to proxy requests for lass templates, e.g. STL ontainers, as it allowsa single pair of funtions to handle de/serialization for a whole family of types. e.g. two funtions whihan handle list<int>, list<double>, list<har> ...
• Common C++ literature suggests that smart ompilers an eliminate at least some of the middle-manode in many ommon funtor-related onstruts.6 Type TraitsIn version 0.9.3 a Type Traits-based system was added to the framework to enapsulate information about DataNode and Serializable interfaes.The traits types live in the namespae s11n and are delared in the �le traits.hpp.In short, the traits types enapsulate information about Data Node and Serializable types. Anyone familiarwith the STL's har_traits<> type will �nd the s11n-related traits types similar.6.1 s11n::node_traits<NodeType>Header �le: traits.hppnode_traits enapsulates the API of a given S-Node type. Using this approahit is possible to add new S-Nodetypes to the framework without requiring lients to diretly know about their onrete types. All that is requiresis a speialization of node_traits to at as the middleman between s11n and spei� node types.The omplete API is doumented in the node_traits API doumentation.Note that it is onsidered �poor form� to diretly use the API of a given Node type in lient ode - use the traitstype when possible.The default node_traits implementation works with s11n::s11n_node. Using node_traits to manipulatethese objets will ensure that lient ode an be used with either potential future node types.It might be interesting to note that s11n has been used suessfully with at least three node types, so theswapping-out-node-type idea has shown to be more than a theoretial feature.33

6.2 s11n::s11n_traits<SerializableType>Header �le: traits.hpps11n_traits enapsulates the following information about a Serializable Type...
• Serialization Funtor (typedef serialize_funtor) - a funtor type responsible for handling alls toserialize() on behalf of SerializableType.
• Deserialization Funtor (typedef deserialize_funtor) - a funtor type responsible for handling allsto deserialize() on behalf of SerializableType. This is normally the same type as the SerializationFuntor, but sometimes it may be neessary or desirable to implement di�erent funtors for eah operation.
• Fatory Type (typedef fatory_type) - a funtor whih is responsible for reating new instanes of thetype (polymorphially, if required). This allows lients to easily install their own fatories for a given lasshierarhy, as opposed to being fored to use the default ones used by s11n.
• Cleanup Funtor (typedef leanup_funtor) - added in 1.1.3 to allow some algorithms to make strongerguarantees in the fae of exeptions. This funtor is responsible for dealloating any otherwise unmanagedmemory whih might belong to a given type. This is used, e.g. to safely lean up ontainers ontainingpointers even when the pointers are nested in sub-ontainers.
• A single stati funtion, lass_name(onst serializable_type * HINT), added in version 1.1.0, allowsalgorithms to query Serializables for their lass names in a more oherent way than in previous s11nversions (but with essentially the same e�et and limitations vis-a-vis polymorphism).The interfae and its onventions are doumented fully in the s11n_traits API doumentation.Note that this type has no data members. That said, a spei� traits speialization is free to expand the type.For example, it may ontain the implementation for the de/serialization operators and typedef itself to be thede/serialize_funtor types (yes, this has been done before and is perfetly kosher).The original intention of s11n_traits was to replae SAM (setion 17). As it turns out, SAM's (T*)-to-(T&) translation is fairly triky to introdue via traits without an undue amount of extra ode (potentiallylient-side). Sine SAM does this in only a few lines of ode, as is zero-maintenane (sine early- or mid-2004year), the pointer/referene translation support will stay in SAM. SAM is, however, implemented in terms ofs11n_traits. That atually ends up giving us another layer we an hook in to, anyway, whih gives us a bitmore �exibility in swapping out omponents via speialization.6.2.1 leanup_funtorSee also setions 19 and 16, whih are losely related to this material.This s11n_traits-spei�ed type was added in 1.1.3 after realizing that this ategory of solution is the only wayfor the ore library to avoid memory leaks in some partiular ases involving failed deserialization.In very spei� terms, the job of the leanup_funtor is to dealloate resoures whih were dynamiallyalloated during deserialization. It is not intended to provide a general leanup solution, only that neessary tofree up memory alloated during deserialization transation.In short, this type is used to lean up fatory-alloated objets if a deserialization involving those objets(diretly or downstream) fails.The leanup funtor is not normally diretly used from lient ode unless the lient has speial needs in deserial-ization algorithms whih require spei� lean up in the fae of failure. Even then, s11n::leanup_serializable()is intended to at as a front-end to the leanup funtor.Beause failed deserialization normally leaves an objet in an unde�ned state, we annot simply delete suhfatory-alloated objets at will. The ath is, we don't know they're type, whih means we might delete amap<int,SomeT*>, in whih ase a delete on the ontainer would result in a leak of the SomeT members. Manyof the major s11n algorithms are ignorant of pointerness, and therefor don't even know if they're working withheap-alloated memory or not. They need a solution whih an be used for heap- or stak-alloated objetsusing the same syntax, and so the leanup_funtor was developed.For most lient-side lasses, those whih manage their own memory (i.e., delete owned pointers at destrution),deleting the objet on a failed deserialization is not a problem beause it leans its resoures when it destruts.Deleting ontainers of unmanaged pointers is a severe problem, however.There is a partiular ase for deserialization where the library annot pass a newly-reated objet bak to thealler (i.e., deser fails and the lib has an objet it reated). In that ase, the library is fored to hoose fromthree equally appalling hoies: 34

1. Give bak the objet whih failed deserialization. This option is not possible if an exeption is thrown bythe deser op, and in any ase has no way of telling the aller that the objet is in an unde�ned state. Tothe aller, it would seem as if all went well.2. Don't delete the objet, but give the user bak null (meaning error), admitting a blatant leak.3. Delete the objet, admitting a leak only if the objet ontains unmanaged pointers.Neither solution is satisfatory, but earlier versions of s11n had some failure ases whih would take the thirdroute (beause the impliations weren't reognized). Thank goodness deserialization failure at that level is sorare :/.The leanup_funtor is expeted to install rules for handling similar ases, suh that on a deserializationfailure we an internally all:s11n_traits<SerializableT>::leanup_funtor()(failedobjet);Assuming that funtor does the right thing, that will lean up reursively on any ontained elements, and anyheap-alloated objets will be deleted. This does not happen all by itself - it requires onforming funtors to beinstalled for eah partiipating type. These are installed as part of the registration proess, but speial typeswill need some ustom handling to install a proper leaner-upper. Again, for PODs and lasses whih deletetheir member pointers at destrution, this is not an issue.See the lass template s11n::default_leanup_funtor for the API and required interfae for speializations.Clients are not required to use that lass, but it is the default implementation, and lients installing their owns11n_traits speializations must ensure that their leanup funtors behave as expeted. You an �nd the vari-ous speializations installed for maps, pairs, and lists by grepping proxy/*.hpp for default_leanup_funtor.These might be useful starting points in writing your own, should you need to.s11n trivia: i delayed implementing leanup_funtor for some weeks beause i was onerned aboutthe build-time overhead the new required types would add (that's a sore point for me). On a smalltest i did using six binaries and two DLLs, the entire build time was only inreased by about twoseonds. The original prototype work for the approah was done almost a year before it was triedout here, but the larger impliations of adding it never hit me until i atually started adding it (after�nally realising that (T * deserialize<T>(node)) was inherently leaky on failure of ontainers ofpointers).6.3 type_traits<T>Header �le: type_traits.hppVersion 1.1.2 introdued type_traits<T>, whih is intended to be used by various algorithms to do thingslike stripping pointer and onst quali�ers from types, and making ompile-time deisions based o� of suhinformation. These types do not store any state and are not diretly related to serialization other than as autility to simplify some serialization ode. There is nothing partiularly speial about this implementation - itis roughly similar to type traits found in many libraries.7 Five-minute intro: PODs and STL ontainerss11n's bread and butter is serializing PODs and STL ontainers. This short demonstration shows you everythingyou need to know to serialize most of them.This whole setion assumes the following typedefs, de�ning some lient-side types we want to serialize:typedef std::list<std::string> List;typedef std::map<int,List> ListMap;And assumes we have some objets of those types:List mylist;ListMap mymap;It is irrelevant whether they are lass members, globals, or whatever. As long as our ode an aess them, wedon't are what sope they live in.Reminder: the s11n soure tree omes with many ready-to-run examples demonstrating a variety of ommonuse ases: sr/lient/sample/*.?pp. 35

7.1 #inlude ...First we need to inlude the ore framework:#inlude <s11n.net/s11n/s11nlite.hpp>Next we need to inlude a �proxy header� for eah type we will de/serialize. These headers �promote� our typesto Serializables (also alled �registering� them).Assuming the above-mentioned typedefs, we will need the following headers:#inlude <s11n.net/s11n/proxy/std/list.hpp>#inlude <s11n.net/s11n/proxy/std/map.hpp>#inlude <s11n.net/s11n/proxy/pod/int.hpp>#inlude <s11n.net/s11n/proxy/pod/string.hpp>(Notie how the �lenames math the names of the type we want to serialize. This is a ommon onvention.)This normally equate to one header per type we want to serialize. Those last two (pod/...) headers aren'tneessary in some ases, but we're going for the least-e�ort approah here, and the other approahes requireknowing more about s11n than this intro assumes you urrently know. Put brie�y, we need those headersbeause the types ontained within a serializable ontainer must normally also be full-�edged Serializables, andwe do this by inluding headers whih install ode to promote those PODs to Serializables. This is also why wean serialize ListMap, ontaining objet of type List, as List is promoted to a Serializable via the inlusion oflist.hpp. ListMap itself is promoted via map.hpp. The order of the inludes is insigni�ant as long as all areinluded by the time we atually try to de/serialize objets of those type.Trivia: by �promotion� to a Serializable, we mean taking a type whih is not inherently Serializableand installing a proxy whih ats on its behalf to provide Serializable behaviour. This allows usto non-intrusively add serialization features to many 3rd-party or built-in types, like the standardontainers and built-in numeri types.7.2 SavingTo save our objets, eah one to its own �le, is trivial:s11nlite::save(mylist, �list.s11n�);s11nlite::save(mymap, �map.s11n�);Saving two disparate objets together inside one �le requires a small bit more e�ort:s11nlite::node_type node;s11nlite::serialize_subnode(node, �list�, mylist);s11nlite::serialize_subnode(node, �map�, mymap);s11nlite::save(node, �mystuff.s11n�);7.3 LoadingNow let's load our objets:List * l = s11nlite::load_serializable<List>(�list.s11n�);ListMap * m = s11nlite::load_serializable<ListMap>(�map.s11n�);If the loading fails, the pointers will be null or an exeption may be thrown.We an also deserialize diretly from the �le diretly into an existing List or ListMap objet:std::auto_ptr<s11nlite::node_type> node(s11nlite::load_node(�map.s11n�));s11nlite::deserialize<ListMap>(*node, mymap);36

Trivia: The expliit <ListMap> quali�ation on that deserialize() all is not neessary for monomorphi types,but it's a good habit to be in beause it's often neessary to ensure proper s11n type lookup for polymorphs.If we had saved both objets to one �le, as shown above, we ould load them with the following:std::auto_ptr<s11nlite::node_type> node(s11nlite::load_node(�mystuff.s11n�));s11nlite::deserialize_subnode(*node, �list�, mylist);s11nlite::deserialize_subnode(*node, �map�, mymap);Notie how this time i left o� the template type quali�ers. Again, this is �ne for monomorphi types, but whenwriting generial de/serialization algorithms you should be in the habit of being expliit about the types.7.4 Now the really easy way: miro_api<>The obligatory header �le:#inlude <s11n.net/s11n/miro_api.hpp>Create a miro:s11nlite::miro_api<ListMap> mi;Save/load to/from a �le or stream:mi.save(mymap, �map.s11n�);ListMap * loaded = mi.load(�map.s11n�);Those are overloaded to take i/ostream objets.If you don't need a �le, don't bother with one. Instead, save it to a string bu�er, whih you an then save to a�le, over a network, or to a opy/paste bu�er:mi.buffer(mymap);ListMap * loaded = mi.load_buffer();The main advantage to the miro_api lass is the elimination of all other template parameters involved withde/serialization. Another advantage is that the lient ode never needs to know about the �node type�, whihvery is prevelant in the s11n[lite℄ APIs. The main limitation, however, is that eah instane of miro_api istied to a single Serializable [Base℄ Type, so we annot use the same miro_api instane for both mylist andmymap. For many purposes, however, miro is the absolutely simplest way to save/load Serializables.8 How to turn JoeAverageClass into a Serializable..."... doing something about a problem whih you do not understand is like trying to lear away thedarkness by thrusting it aside with your hands."Alan W. WattsBefore we start: the s11n soure tree and web site have a number of examples for using the library. You maywant to hek one of those plaes if this setion does not help you.In short, reating a Serializable is normaly made up of these simple steps:1. Create the lass, implementing a pair of de/serialize methods with the signatures expeted by s11n. Thede/serialize operators may be de�ned in a separate (proxy) lass in many ommon ases.2. Tell s11n that your lass exists, via registering it - see setion 12.If you are proxying a well-understood data struture for whih a funtor already exists to de/serialize it, stepone disappears! An example would be proxying a std::list<int> or std::list<Serializable*> - those areboth handleable by the s11n::list::list_serializable_proxy lass, provided that the ontained types areSerializables. For a list of some useful proxy funtors see setion 13. In the ase of proxying standard ontainers,inlude the appropriate registration header �le: 37

<s11n.net/s11n/proxy/std/list.hpp> // std::list<s11n.net/s11n/proxy/std/map.hpp> // std::map...If the ontainer ontains types whih must be proxied, those headers must also be inluded. For example,proxying a map<int,string> requires the following inludes:<s11n.net/s11n/proxy/std/map.hpp><s11n.net/s11n/proxy/pod/int.hpp><s11n.net/s11n/proxy/pod/string.hpp>or an equivalent (there are other ways to do this). After that, any std::map ontaining any ombination of intsor strings an be serialized via the ore s11n API, inluding map<string,int> or map<int,map<int,string>>,et.8.1 Create a Serializable lassAs you probably know by now, a Serializable's interfae is made up two de/serialize operators. Types withdi�erent interfaes an also be used - see the next setion. This library does not impose any inheritene require-ments nor funtion naming onventions, but for this simple example we will take the approah of a serializableobjet hierarhy using the so-alled Default Serializable Interfae, made up of two overloaded operator()s.Assume we've reated these lasses:lass MyType {// serialize:virtual bool operator()(s11nlite::node_type & dest) onst;// deserialize:virtual bool operator()(onst s11nlite::node_type & sr);// ... our funtions, et.};lass MySubType : publi MyType {// serialize:virtual bool operator()(s11nlite::node_type & dest) onst;// deserialize:virtual bool operator()(onst s11nlite::node_type & sr);// ... our funtions, et.};It is perfetly okay to make those operators member funtion templates, templatized on the NodeType, butkeep in mind that member funtion templates annot be virtual. Implementing them as templates will makethe serialization operators apable of aepting any Data Node type supported by s11n, whih may have futuremaintenane bene�ts.If a Serializable will not be proxied, as the ones shown above are not, we must register it as being a Serializable:see setion 12 for how tell s11n about the lass.8.2 Speifying ustom Serializable interfaes for InterfaeTypesIf MyType does not support the default interfae, but has, for example:[virtual℄ bool save()(data_node & dest) onst;[virtual℄ bool load()(onst data_node & sr);The library an still work with this. How to register the type as Serializable is desribed in setion 12.The same names may be used for both funtions, as long as the onstness is suh that they an be properlytold apart by the ompiler. 38

8.3 Speifying Serializer Proxy funtorsThis is one of s11n's most powerful features. With this, any type an be made serializable without editing thelass, provided its API is suh that the desired data an be fethed and later restored. Almost all modernobjets (those worth serializing) are designed this way, so this is pratially never an issue.Continuing the example from the previous setion, if MyType annot be made Serializable - if you an't, ordon't want to, edit the ode - then s11n an use a funtor to handle de/serialize alls.First we reate a proxy, whih is simply a strut or lass with this interfae:Serialize:bool operator()(DataNodeType & dest, onst SerializableType & sr) onst;Deserialize:bool operator()(onst DataNodeType & sr, SerializableType & dest) onst;Notes about the operators:
• Yes, both funtions �should probably� be onst in this ase, for the widest funtor reusability, but if C++will let you get away with non-onst operators in your ontexts then s11n will aept them.
• The operators may be templates and/or the funtor may be a template. As long as C++'s type resolutionan �gure out what to do, it's legal.
• There are rare ases where alls an be ambiguously for this interfae, so two funtors - one eah forde/serialization - may be neessary. (Trivia: in pratie this has only one been neessary, and wasprobably aused by my mis-use of a non-onst objet.)We must then register the proxy, as explained in setion 12.6. For MyType and its sublass, shown above, theregistration would look like this:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�// #define S11N_ABSTRACT_BASE // Only if MyType is abstrat#inlude <s11n.net/s11n/reg_s11n_traits.hpp>#define S11N_TYPE MySubType#define S11N_TYPE_NAME �MySubType�#define S11N_BASE_TYPE MyType#inlude <s11n.net/s11n/reg_s11n_traits.hpp>It may be interesting to know...
• There an be only one de/serialization handler for any given type, so you may not register both a baseand a proxy as being the handler for a given type, nor may you register two proxies as being the proxy fora single Interfae Type. Internally haining alls within proxies an be used to get around the one-proxylimitation.
• Proxies may not normally save/load private data of the being-proxied type. In pratie is is rarely anissue, as most modern libraries provide adequate aessors for their data. Classes designed suh that theyonly possible way to store/restore their state is from internally should probably be redesigned to be morefriendly. As a base-line omparison: every STL data struture whih has been tried with this libraryhas the neessary API to support proxying, with the exeption of those with unusual traversal rules, likequeue and stak (those two ould be done, but would require an extra opy to be made, sine we maynot modify the soure objet during serialization).
• A proxy lass does not need to register with a lassloader. It may be registered - there is no harm in doingso, but there is never a need to30. InterfaeType, on the other hand, must always be registered with thelassloader.30Or, more orretly, if you understand the highly unusual (and purely theoretial) ase that would warrant suh registration,then you'll understand why we oversimplify here. 39

• Proxies have a �xed interfae - the funtion names and signatures may not be hanged or marshaled (asSerializable interfaes an), for the simple reason that the proxies are the ones doing the marshaling.
• In theory it may sometimes be neessary, due to onst-vs-non-onst ambiguity, to split a de/serializationfuntor into two funtors. In pratie it's happened one, ever, bak in s11n 0.7.x.
• Proxies an potentially hain alls to eah other together, whih allows some interesting possibilities andvery �exible ontrol over de/serialization without touhing your lasses. e.g. a data versioning systemould be implemented as a proxy whih introdues or veri�es a version property and then passes on theall to the loal Serializable interfae of the objet.
• Client ode an, e.g. use a maro to de�ne whih proxy will be used for a given type (or group of types),allowing them to swith freely between serialization implementations on a per-type basis. This is how allof the �standard� proxies are implemented.i have a feeling there are a wide range of as-yes-undisovered triks for serialization proxies. s11n early-adopterGary Boone alls this feature �s11n's most powerful,� and i an't help but agree with him.9 How to turn JoeNonAverageClass into a Serializable..."May your hands always be busy. May your feet always be swift. May you have a strong foundationwhen the winds of hanges shift."Bob DylanThe tehniques overed in the previous setion work for most lasses, but are not suitable for some others.The following proess works the same way for all types, as long as:
• It implements a serializable interfae we an register with s11n.or:
• A funtor an be registered whih will take over serilization for the type.It is best shown with an example, where we proxy a lient-supplied type:#define S11N_TYPE MyType#define S11N_TYPE_NAME "MyType"// [de℄serialization funtor, only for proxied types:#define S11N_SERIALIZE_FUNCTOR MyTypeSerializationProxy// optional DEserialization funtor, defaults to S11N_SERIALIZE_FUNCTOR:// #define S11N_DESERIALIZE_FUNCTOR MyTypeDeserializationProxy#inlude <s11n.net/s11n/reg_s11n_traits.hpp>You're done!That's all that's neessary to take omplete ontrol over the internals of how s11n proxies a lass.This proess must be repeated for eah new type. The S11N_xxx maros are all unset after the registrationheader is inluded, so they may be immediately re-de�ned again in lient ode without having to unde�ne them�rst. Other proxy registration supermaros may implement whatever interfae they like, with their own marointerfaes, allowing per-proxy-per-Serializable ustomization via maro toggles.The registration proess, on the surfae, looks... well, awkward. Trust me, though: the bene�ts over of thissimple approah maro- and ode-generation-based solutions are tremendous, and have helped make someextremely triky (or essentially impossible) ases muh simpler to implement.Note that when registering template types, you also need to register their templatized types - they will be passedaround just like other Serializables, so if s11n doesn't know about them you will get ompile errors. And keedin mind that, e.g. list<int> and list<int*> are di�erent types, and thus require di�erent speializations.However, list<int> and (list<int>*) are equivalent for most of s11n's purposes.40

9.1 JoeAverageClass<> lass templateThe s11n soure tree ontains a demonstration of this: sr/lient/sample/templates.ppOptionally, take a look at the standard proxies for the STL list/map ontainers, in the s11n soure tree undersr/proxy/reg_{list,map}_speializations.hpp. These �les demonstrate the serialization proxying of lasstemplates.If you have a lass template and a proxy prepared for it, you an register the template and its proxy withspeialized supermaros dediated to this purpose:Template type with one templatized parameter:#define S11N_TEMPLATE_TYPE MyT#define S11N_TEMPLATE_TYPE_NAME "MyT"#define S11N_TEMPLATE_TYPE_PROXY MyT_s11n#inlude <s11n.net/s11n/proxy/reg_s11n_traits_template1.hpp>If MyT has two templatized parameters:#inlude <s11n.net/s11n/proxy/reg_s11n_traits_template2.hpp>If you need to register a type with more than two parameters, you have at least two options:1. Copy the reg_s11n_traits_templateN.hpp �les into your tree and modify for more arguments. Pleasethen send me a opy. :)2. Wait until i personally need the feature, then the next s11n release will have it.9.1.1 A leanup funtorThere is one additional onern when serializing lass templates: if those types do not own pointers theyontain then you must supply a �leanup funtor� so that the library knows how to dealloate your ob-jets safely if it needs to as a result of an exeption. To do this, simply provide a partial speialization ofs11n::default_leanup_funtor, as brie�y shown below and demonstrated in full in the sample soure ode.Assuming MyT has two template parameters and is strutured like a std::pair, we an implement a leanupfuntor like this:namespae s11n {template <typename T1, typename T2>strut default_leanup_funtor< MyT<T1,T2> > {typedef MyT<T1,T2> leaned_type;void operator()(leaned_type &) {// example, assuming MyT is pair-like:typedef typename ::s11n::type_traits<T1>::type _T1; // strip anypointertypedef typename ::s11n::type_traits<T2>::type _T2; // ditto::s11n::leanup_serializable<_T1>(.first);::s11n::leanup_serializable<_T2>(.seond);}};}Believe it or not, that works uniformly regardless of whether T1 and T2 are pointer types or not. We stripthe pointer part so that if T1 or T2 are pointers, then the alls to leanup_serializable() get referenes topointers, whih makes it apable of assigning those pointers to 0 after leaning/deleting them.Remember that the leanup proess is essentially a no-op for value/referene types, but dealloates pointersalong the way. In the ase of MyT<int,MyT<long,string *> >, leaning up the outer-most MyT objet willinherently limb down to lean up the (string*) part of the nested MyT. The same thing will happen forMyT<A,B<C,M<K,V*>> >, provided all of the nested types are Serializables with a proper leanup funtor installed.This ability is ritial to guaranteeing no leaks in the fae of exeptions.The registration �les for the standard ontainers also ontain leanup funtor implementations whih you anuse as a basis for writing your own. 41

10 Doing things with Serializables"...you aren't disappointed when using a DOS mahine; you know what to expet and are pleasantlysuprised if more happens."Larry AndersonOne you've got the Serializable �paperwork� out of the way, you're ready to implement the guts of yourserialization operators. In s11n this is normally extremely simple. Some of the many possibilities are shownbelow.In maintenane terms, the serialization operators are normally the only part of a Serializable whih must betouhed as a lass hanges. The �paperwork� parts do not hange unless things like the lass name or itsparentage hange [or you upgrade to a newer s11n whih breaks old APIs or onventions℄.Remember that when using Data Nodes, it is strongly preferred to use the node_traits<NodeType> interfae,as opposed to the Node Type API diretly, as explained in setion 6.1. Client ode may of ourse use typedefsto simplify usage of node_traits.In the examples shown here we will assume the following typedef is in e�et:typedef s11n::node_traits<NodeType> NTR;10.1 Setting �simple� propertiesAny data whih an be represented as a string key/value pair an be stored in a data node as a property:NTR::set(node, �my_property�, my_value);set() is a funtion template and aepts a string as a key and any Streamable Type as a valueThere are ases involving ambiguity between ints/bools/hars whih may require that the lient explitelyspeify the property's type as a template parameter:NTR::set<int>(int, �my_number�, mynum);NTR::set<bool>(node, �my_number�, mybool);Eah property within a node is unique: setting a property will overwrite any other property with the samename.It must be re-iterated that set() only works when setting values whih are Streamable Types. That is, typeswhih support two omplementary ostream<< and istream>> operators. To save Serializable hildren use theserialize() family of funtions.10.2 Getting property valuesGetting properties from nodes is also very simple. In the abstrat, it looks like:T val = NTR::get(node, �property_name�, some_T_objet);e.g. this->name(NTR::get(node, �name�, this->name()));What this is saying is:set this objet's name to the value of the 'name' property of node. If 'name' is not set in node, orannot be onverted to a string via i/o streams, then use the urrent value of this->name().That sounds like like a mouthful, but it's very simple: when alling get() you must speify a seond parameter,whih must be of the same type as the return result. This seond parameter serves several purposes:
• A default value: a known-good (or known-bad!) value to use in ase the supplied objet ould not beonverted. 42

• An error value: The library annot know what is an is not a valid value for suh onversions, so thelient may supply one here and ompare it to what they expet. e.g. data versioning heks ould beimplemented this way.
• It tells get() what type of objet it returns, without you having to speify get<ReturnType>(�mykey�).As with set(), get() is a family of overloaded/templated funtions, and there are ases where, e.g. int andbools may ause ambiguity at ompile time. See the set() doumentat, above, for the proper workaround.As with set(), get() only works with Streamable Types. To restore Serializable hildren, use the deserialize()family of funtions.You an also use NTR::is_set(node,�property�) to hek for existene of a property.10.2.1 Simple property error hekingHere's how one might implement simple error heking for properties:int foo = NTR::get(node, �meaning_of_life�, -1);if(-1 == foo) { ... error: we all know its really 42 ... }std::string bar = NTR::get(node, �name�, std::string());if(bar.empty()) { ... error ... }if(! NTR::is_set(node,�important�)) { ... error ... }Keep in mind that s11n annot know what values are aeptable for a given property, thus it an make noassumptions about what values might be invalid or error values.Theoretially, installing a Serializable Proxy for a type whih does suh heks and then passes the all on tothe objet's loal Serializable Interfae is one way to keep this type of ode out of Serializable lasses.10.2.2 Saving ustom Streamable TypesThis is a no-brainer. Streamable Types are supported using the same get/set interfae as all other �simple�properties. Assume we have a Geometry type whih support i/ostream operators. In order to save it we mustsimply all:NTR::set(node, �geom�, this->geometry());and to load it:this->geometry(NTR::get(node, �geom�, this->geometry()));or maybe:this->geometry(NTR::get(node, �geom�, Geometry()));10.3 Finding or adding hild nodes to a nodeUse the s11n::find_hild_by_name() and s11n::find_hildren_by_name() funtions to searh for hildnodes within a given node. Alternately, use node_traits<NodeType>::hildren() funtion to get the list ofits hildren, and searh for them using riteria of your hoie.Use s11n::reate_hild() to reate a hild and add it to a parent in one step. Alternately, add hildren usingnode_traits<NodeType>::hildren(node).push_bak().

43

10.4 Serializing Streamable ContainersStreamable Containers are, in this ontext, ontainers for whih all stored types are Streamable Types (see4.1). s11n an save, load, and onvert suh types with unpreedented ease.Normally ontainers are stored as sub-nodes of a Serializable's data node, thus saving them looks like:s11n::map::serialize_streamable_map(node, �subnode_name�, my_map);To use this funtion diretly on a target node, without an intervening subnode, use the two-argument versionwithout the subnode name. Be warned that none of the serialize_xxx() funtions are meant to be alledrepeatedly or olletively on the same data node ontainer. That is, eah one expets to have a �private� nodein whih to save its data, just as a full-�edged Serializable objet's node would. Violating this may result inmangled ontent in your data nodes, or possibly an exeption, depending on the algo (in 1.1.3+ most algosthrow in this ase).Loading a map requires exatly two more haraters of work:s11n::map::deserialize_streamable_map(node, �subnode_name�, my_map);(Can you guess whih two haraters hanged? ;)If you want to de/serialize a std::list or std::vetor of Streamable Types, use the de/serialize_streamable_list()variants instead:s11n::list::serialize_streamable_list(targetnode, �subnodename�, my_list);Note that s11n does not store the exat type information for data serialized this way, whih makes it possibleto onvert, e.g. a std::list<int> into a std::vetor<double*>, via serialization. The wider impliation isthat any list- or map-like types an be served by these simple funtions (all of them are implemented in 6-8lines of ode, not ounting typedefs). We atually rely on C++'s strong typing to do the hardest parts of typedetermination, and we don't atually need the type name in some ases involving monomorphi Serializables.More spei�ally, whenever no lassloading operation is required, the lass name ist uns egal31.Note that these funtions only work when the ontained types are Streamables. If they are not, use thes11n::list::serialize_list() and s11n::map::serialize_map() family of funtions. Note that thosefuntions also work for Streamable types as long as a proxy has been installed for those Streamables (seeproxy/pod/*.hpp for examples).10.4.1 Trik: �asting� list or map typesIf you have lists or maps whih are similar, but not exatly of the same types, s11n an at as a middleman toonvert them for you. Assume we have the following maps:map<int,int> imap;map<double,double> dmap;We an onvert imap to dmap like this:data_node n;s11n::map::serialize_streamable_map(n, imap);s11n::map::deserialize_streamable_map(n, dmap);In fat, that doesn't require that any of the involved types be registered Serializables, provided the algorithms'other requirements are met.For Serializables we have a simpler option:s11nlite::s11n_ast(imap, dmap);This requires that proxies be in plae for the maps as well as the ontained types, int and double, whih wean install with:31German for �frankly, my dear, we don't give a damn.� 44

#inlude <s11n.net/s11n/proxy/std/map.hpp>#inlude <s11n.net/s11n/proxy/pod/int.hpp>#inlude <s11n.net/s11n/proxy/pod/double.hpp>Doing the opposite onversion via s11n_ast() �should� also work, but would be a potentially bad idea beauseany post-deimal data of the doubles would be lost upon onversion to int. The ompiler annot warn youabout loss of preision in suh a ase beause the onversions happen via lexial asting.Similar onversions will work, for example, for onverting a std::list to a std::vetor. For example:#inlude <s11n.net/s11n/proxy/std/list.hpp>#inlude <s11n.net/s11n/proxy/std/vetor.hpp>#inlude <s11n.net/s11n/proxy/pod/int.hpp>...list<int> ilist;vetor<int *> ive;// ... populate ilist ...s11nlite::s11n_ast(ilist, ive);That's all there is to it. The library takes are of alloating the (int*) hildren of the vetor. The lient isresponsible for dealloating them, just as one would when using any �normal� STL ontainer of pointers. Onesimple way to dealloate them:s11n::leanup_serializable(ive);That works even if the vetor ontains ontainers whih ontain ontainers whih themselves ontain moreontainers of pointers.10.5 De/serializing Serializable objetsIn terms of the lient interfae, saving and restoring Serializable objets is slightly more omplex than workingwith basi types (like PODs), primarily beause we must deal with more type information.10.5.1 Individual Serializable objetsThe following C++ ode will save any given Serializable objet to a �le:s11nlite::save<MyType>(myobjet, �somefile.whatever�);this will save it into a target s11nlite::node_type objet:s11nlite::serialize<MyType>(mynode, myobjet);The node ould then be saved via an overloaded form of save().There are several ways to save a �le, depending on what Serializer you want to use. s11nlite uses only oneSerializer by default, so we'll skip that subjet for now (tips: see s11nlite::serializer_lass() for a wayto override whih Serializer it uses).Loading an objet is fairly straightforward. The simplest way is:InterfaeType * obj = s11nlite::load_serializable<InterfaeType>(�somefile.s11n�);InterfaeType must be a type registered with the appropriate lassloader (i.e., the InterfaeType lassloader)and must of ourse be a Serializable type. To illustrate that �rst point more learly, the following are notorret :SubTypeOfInterfaeType* obj = s11nlite::load_serializable<InterfaeType>(�somefile.s11n�); 45

Will not ompile: there is no impliit onversion from InterfaeType to a subtype of that type.InterfaeType* obj = s11nlite::load_serializable<SubTypeOfInterfaeType>(�somefile.s11n�);Will ompile but will not do what is expeted, beause it's trying to use a di�erent lassloader and APImarshaller than InterfaeType.It is ritial that you use the base-most type whih was registered with s11n, or you will almost ertainly notget bak an objet from any deserialize-related funtion.If you have a non-pointer type whih must be populated from a �le, it an be deserialized by getting anintermediary data node, by using something like the following:s11nlite::node_type * n = s11nlite::load_node(�somefile.s11n�);or: onst s11nlite::node_type * n = s11n::find_hild_by_name(parent_node, �subnode_name�);Then, assuming you got a node:bool worked = s11nlite::deserialize(*n, myobjet);delete(n); // NOT if you got it from another node! It belongs to the parent node!Note, however, that if the deserialize operation fails then myobjet might be in an unde�ned or unusable state.In pratie this is extremely rare, but it may happen, and lient ode may need to be able to deal with thispossibility.10.5.2 Containers of SerializablesThis subsetion exists only to avoid someone asking, �how do I serialize a list<T> or list<T*>?�Here you go:#inlude <s11n.net/s11n/proxy/listish.hpp> // list-related algos#inlude <s11n.net/s11n/proxy/std/list.hpp> // std::list<T> proxy registration...s11n::serialize(target_node, sr_list);...s11n::deserialize(sr_node, tgt_list);// or:ListType * tgt_list = s11n::deserialize<ListType>(sr_node);The same goes for maps, exept that you should inlude mapish.hpp and std/map.hpp. Note that �list�algorithms atually work with std::list, vetor, set and multiset, but that proxies for eah general listtype must be installed separately, by inluding one of std/{list,set,vetor,...}.hpp. The map algorithmswork for std::map and multimap and are proxied via the headers std/{multimap,map}.hpp.So what is di�erent from the above ode and de/serialization of any other Serializable type? Nothing. That'spart of what makes s11n so easy to use - lients only really need to remember a small handful of funtions.10.5.3 �Brute fore� deserializationAny data node an be de/serialized into any given Serializable, provided the Serializable supports a deserializeoperator for that node type. The main impliation of this is that lients may fore-feed any given node into anyobjet, regardless of the meta-data type of the data node (i.e., its lass_name()) and the Serializable's type.This feature an be used and abused in a number of ways, and one of the most ommon uses is to deserializenon-pointer Serializables:if(onst data_node * h = s11n::find_hild_by_name(srnode, �fred�)) {46

if(! s11nlite::deserialize<MyType>(*h, myobjet)) {... error ...}}The notable down-side of brute-fore deserialization, however, is this: if the deserialize operation fails thenmyobjet may be in an unde�ned state, depending on the algorithm used to deserialize it. Handling of this is(a) very lient-spei�, and (b) in pratie it is very rare for a deserialization to fail at this level. Brute foredeserialization spei�ally opens up the possibility of feeding any data to any deserialization algorithm, whihof ourse means that for orret results you must use mathing data and algorithms.11 Walk-throughs: imlementing Serializable lassesThis setion ontains some example of implementing real-world-style Serializables. It is expeted that thissetion will grow as exeptionally illustrative samples are developed or submitted to the projet.There are several omplete, doumented examples in the soure tree under sr/lient/..., and the s11n website has several. Both soures go well beyond what is presented here.11.1 Sample #1: Read this before trying to ode a Serializable!Here we show the ode neessary to save an imaginary lient-side Serializable lass, MyType.The ode presented here ould be implemented either in a Serializable itself or a in a proxy, as appropriate.The ode is the same, either way.In this example we are not going to proxy any lasses, but instead we will use various algorithms to store them.The end e�et is idential, though the internals of eah di�er slightly.11.1.1 The dataLet's assume that MyType has this rather ugly mix of internal data we would like to save:std::map<int,std::string> istrmap;std::map<double,std::string> dstrmap;std::list<std::string> slist;std::list<MyType *> hilds;size_t m_id;Looks bad, doesn't it? Don't worry - this is a trivial ase for s11n.11.1.2 The #inludesWe will need to inlude the following headers for our partiular ase:#inlude <s11n.net/s11n/s11nlite.hpp>#inlude <s11n.net/s11n/proxy/std/list.hpp> // list proxy#inlude <s11n.net/s11n/proxy/std/map.hpp> // map proxy#inlude <s11n.net/s11n/proxy/pod/int.hpp> // see below#inlude <s11n.net/s11n/proxy/pod/double.hpp> // see below#inlude <s11n.net/s11n/proxy/pod/string.hpp> // see belowThe pod/xxx.hpp headers promote the given PODs to �rst-lass Serializables. This is not neessary, nordesireable, for all ases, but simpli�es this example. 47

11.1.3 The serialize operatorSaving member data normally requires one line of ode per member, as shown here:bool operator()(s11nlite::node_type & node) onst{ typedef s11nlite::node_traits TR;TR::lass_name(node, "MyType"); // ritial, but see below!TR::set(node, "id", m_id);using namespae s11nlite;serialize_subnode(node, "string_list", slist);serialize_subnode(node, "hildren", hilds);serialize_subnode(node, "int_to_str_map", istrmap);serialize_subnode(node, "dbl_to_str_map", dstrmap);return true;}The lass name for a registered monomorphi Serializable types an be fethed by alling ::lassname<T>(). Infat, SAM (setion 17) does this for you, and the lass_name() all an tehnially be left out for monomorphitypes. It is probably a good idea to go ahead and inlude it, for the sake of larity and pedanti orretness.If we had not promoted our PODs to �rst-lass serializables, using pod/xxx.hpp, we ould still serialize ourdata, but would then need reate registrations to map them to spei� proxies or all the desired algorithmsoutselves. Both are desireable under partiular irumstanes. A sample of how that might be done:s11n::list::serialize_streamable_list(node, "string_list", slist);s11n::map::serialize_streamable_map(node, "int_to_str_map", istrmap);Those algorithms produe muh more ompat output than the default proxies, but are only useful when alltypes ontained in the ontainer are i/ostreamable.11.1.4 The deserialize operatorThe deserialize implementation is almost a mirror-image of the serialize implementation, plus a ouple lines oflient-dependent administrative ode (not always neessary, as explained below):bool operator()(onst s11nlite::node_type & node){ //////////////////// avoid dupliate entries in our lists:istrmap.lear();dstrmap.lear();slist.lear();s11n::leanup_serializable(this->hilds);//////////////////// now get our data:typedef s11nlite::node_traits TR;this->m_id = TR::get(node, "id", m_id);using namespae s11nlite;deserialize_subnode(node, "string_list", slist);deserialize_subnode(node, "hildren", hilds);deserialize_subnode(node, "int_to_str_map", istrmap);deserialize_subnode(node, "dbl_to_str_map", dstrmap);// ^^^ If we previously used serialize_streamable_xxx() we would// need to use deserialize_streamable_xxx() to retrieve the data.return true; 48

}A note about leaning up before deserialization:In pratie these heks are normally not neessary. s11n never, in the normal line of duty, diretly alls thedeserialize operator more than one time for any given Serializable: it alls the operator one time diretly af-ter instantiating the objet. It is oneivable, however, that lient ode will initiate a seond (or subsequent)deserialize for a live objet, in whih ase we need to avoid the possibility of appending to our urrent proper-ties/hildren, and in the above example we avoid that problem by learing out all hildren and lists/maps �rst.In pratie suh ases tend to only happen in test/debug ode, not in real lient use ases. The possibility ofmultiple-deserialization is there, and it is potentially ugly, so it is prudent to add the extra few lines of odeneessary to make sure deserialization starts in a lean environment.11.1.5 Serializable/proxy registrationThe interfae must now be registered with s11n, so that it knows how to interept requests on that type's behalf:for full details see setion 12, and for a quik example see 9.11.1.6 Done! Your objet is now a Serializable Type!That's all there is to it. Now MyType will work with any s11n API whih work with Serializables. For example:s11nlite::save(myobjet, std::out);will dump our MyObjet to out via s11n serialization. This will load it from a �le:MyType * obj = s11nlite::load_serializable<MyType>(�filename.s11n�);(Keep in mind that the objet you get bak might atually be some anestor of MyType - this operation is polymorphi if MyTypeis.)Now that wasn't so tough, was it?A very signi�ant property of MyType is this:MyType is now inherently serializable by any ode whih uses s11nlite, regardless of the ode's loalSerialization API! s11n takes are of the API translation between the various loal APIs.Weird, eh? Let's take a moment to day-dream:Consider for a moment the outrageous possibility that 746 C++ developers worldwide implement s11n-ompatibleSerializable support for their objets. Aside from having a onvenient serialization library at their disposal (imean, obviously ;), those 746 developers now have 100% transparent aess to eah others' serialization apa-bilities, without having to know anything but the other libraries' base-most types.Now onsider for a moment the impliations of your lasses being in that equation...Let us toke on that thought for a moment, absorbing the impliations.Well, i think it's pretty ool, anyway.11.2 Gary's odeOne of s11n's early-adopters, Gary Boone, ontated me in early 2004 about how to go about adding s11n supportto his projet. For starters, he had a simple struture (desribed below). On the surfae, the problem appearsto be non-trivial, but this is only when viewing the ode through the lense of traditional C++ tehniques...Let us repeat the s11n mantra (well, one of several32):s11n is here to Save Our Data , man!32Trivia note: The banner label on the s11n web site rotates through s11n's list of o�ial mantra, and new mantra are added asthey ar disovered. Submit your s11n mantra or lever quip and it will show up on the s11n web site. :)49

The type of problem Gary is trying to solve here is s11n's bread and butter, as his solution will show us in a fewmoments.After getting over the initial learning hurdles - admittedly, s11n's abstratness an be a signi�ant hindernessin understanding it - he got it running and sent me an email, whih i've reprodued below with his permission.i must say, it gives me great pleasure to post Gary's text here. Through his mails i have witnessed the dawning ofhis exitement as he omes to understanding the general utility of s11n, and that is one of the greatest rewardsi, as s11n's author, an possibly get. Reading his mails ertainly made me feel good, anyway :).Gary's email address has been removed from these pages at his request. If, after reading his examples, you'reintested in ontating Gary, please send me a mail saying so and i will happily forward it on to him.The ode below has been updated from Gary's original to aomodate hanges in the ore library, but it isessentially the same as his original post.In some plaes i have added desriptive or bakground information, marked like so:[editorial: ℄11.2.1 Gary's Revelation[From: Gary Boone, 12 Marh 2004℄... Attahed is my solution ('map_of_struts.*'). Basially, I followed your suggestion of writing thevetor elements as node hildren using a for_eah & funtor....I like the idea of not having to hange any of my objets, but instead use funtors to tell s11n howto serialize them....Dude, it works!! That's amazing! That's huge, allowing you to ode serialization into your projetswithout even touhing other people's ode in distributed projets. It means you an experimentwith the library without having to hak/unhak your primary odebase.Stephan, you have to make this learer in the dos! It should be example #1:[editorial: i feel ompelled to inrease the font size of that last part by a few points, beause i had the distintimpression, while reading it, that Gary was over�owing with amazement at this realization, just as i �rst didwhen the impliations of the arhteture started to trikle in. :) That said, the full impliations and limits ofthe arhiteture not yet fully understood, and probably won't be in the forseeable future - i honestly believe itto be that �exible33.℄...One of the most exiting aspets of s11n is that you may not have to hange any of your objets touse it! For example, suppose you had a strut:strut elem_t {int index;double value;elem_t(void) : index(-1), value(0.0) {}elem_t(int i, double v) : index(i), value(v) {}};You an serialize it without touhing it! Just add this proxy funtor so s11n knows how to serializeand deserialize it:// Define a funtor for serialization/deserialization// of elem_t struts:strut elem_t_s11n34 {33That text was written some time in the 0.7 or 0.8 yle, early 2004 (today == 24 Sept 2005). i still believe that (a) the fulllimits and impliations of the library are not yet fully understood and (b) it really is that �exible. :)34Gary is redited with oming up with the MyType_s11n naming sheme, and it now appears regularly in other s11n lienttrees. 50

// note: no inheritene requirements, but// polymorphism is permitted./*************************************// a so-alled �serialization operator�:// This operator stores sr's state into the dest data ontainer.// Note that the SOURCE Serializable is onst, while the TARGET// data node objet is not.*************************************/template <typename NodeType>bool operator()(NodeType & dest, onst elem_t & sr) onst35 {typedef s11n::node_traits<NodeType> TR;TR::lass_name(dest, "elem_t");TR::set(dest, "i", sr.index);TR::set(dest, "v", sr.value);return true;}/*************************************// a �deserialization operator�:// This operator restores dest's state from// the sr data ontainer.// Note that the SOURCE node is onst, while// the TARGET Serializable objet is not.*************************************/template <typename NodeType>bool operator()(onst NodeType & sr, elem_t & dest) onst {typedef s11n::node_traits<NodeType> TR;dest.index = TR::get(sr, "i", -1);dest.value = TR::get(sr, "v", 0.0);return true;}};[editorial: while the similar-signatured overloads of operator() may seem onfusing or annoying at �rst, withonly a little pratie they will beome seond nature, and the symmetry this approah adds to the API improvesits overall ease-of-use. Note the bold text in their desriptions, above, form simple pneumonis to rememberwhih operator does what.The onstness of the arguments ensures that they annot normally (i.e., via standard s11n operations) be alledambiguously. That said, i have seen one ase of a proxy funtor (not Serializable) for whih onst/non-onst-ambiguity was a problem, whih is why proxies may optionally be implemented in terms of two objets: oneSerializeFuntor and a orresponding DeserializeFuntor, eah of whih must implement their orrespondinghalves of the de/serialize equation. Often it is very useful to �rst implement de/serialize algorithms (i.e. asfuntions) and then later supply the 8-line wrapper funtor lass whih forwards the alls to the algorithms.Several internal proxies do exatly this, and it gives lient ode two di�erent ways of doing the same thing, atthe ost of an extra ouple minutes of oding the proxy wrapper around an existing algoritm. As a generalrule, algorithms are slightly easier to test than proxies early on in development, as they are missing one level ofindiretion whih proxies logially bring along.Bak to you, Gary...℄The �nal step is to tell s11n about the assoiation between the proxy and its delegatee:#define S11N_TYPE elem_t#define S11N_TYPE_NAME �elem_t�#define S11N_SERIALIZE_FUNCTOR elem_t_s11n#inlude <s11n.net/s11n/reg_s11n_traits.hpp>35Whether or not a funtor has onst or non-onst operator()s is largely a matter of what the funtor is used for. The onstnessof the arguments is set - it may not deviate from that shown here. The onstness of the operator itself is not de�ned by s11nonventions. 51

[editorial: After this registration, elem_t_s11n is now the o�ial delegate for all de/serialize operations involv-ing elem_t. Any time a de/serialize operation involves an elem_t or (elem_t *) s11n will diret the all toelem_t_s11n. The only way for a lient to bypass this proxying is to do the most dispiable, unthinkable at inall of libs11n: passing the node to the Serializable diretly using the Serializable's API! See setion 5.4 for anexplanation of why taking suh an ation is onsidered Poor Form!℄You're done. Now you an serialize it as easily as:elem_t e(2, 34.5);s11nlite::save(e, std::out);Deserializing from a �le or stream is just as straightforward:elem_t * e = s11nlite::load_serializable<elem_t>("somefile.elem");or:s11nlite::data_node * node = s11nlite::load_node("somefile.elem");elem_t e;bool worked = s11nlite::deserialize(*node, e);delete node;[editorial: that last example basially �annot fail� unless elem_t's deserialize implementation wants it to, e.g. ifit gets out-of-range/missing data and deides to omplain by returning false. What might ause missing data ina node? That's exatly what would e�etively happen if you �brute-fore� a node populated from a non-elem_tsoure into elem_t. Consider: the node will probably not be laid out the same internally (di�erent propertynames, for example), and if it is laid out the same, there are still no guarantees suh an operation is symantiallyvalid for elem_t. Obviously, handling suh ases is 100% lient-spei�, and must be analyzed on a ase-by-asebasis. In pratie this problem is mainly theoretial/aademi in nature. Consider: frameworks understandtheir own data models, and don't go passing around invalid data to eah other. s11n's strit lassloading shememeans it annot inherently do suh things, so that type of �use and abuse� neessarily omes from lient-sideode. Again: this never happens. Jesus, i'm so pedanti sometimes...℄...[End Gary's mail℄Gary hit it right on the head. The above ode is exatly in line with what s11n is designed to do, and his �rstgo at a proxy was implemented exatly orretly. Kudos, Gary!Note that with the various ontainer proxies whih ship with s11n, Gary's elem_t type an take part in ontainerserialization, suh as in a map<string,elem_t>or list<elem_t>. There is no separate �serialize ontainer of elem_t� operation, as the generi list/mapalgorithms inherently handle any and all Serializables:typedef std::map<std::string,elem_t> MapT;MapT mymap;... populate mymap ...s11nlite::save(mymap, �myfile.s11n�);12 s11n registration & �supermaros� (IMPORTANT)As of version 0.8.0, s11n uses a new lass registration proess, providing a single interfae for registering anytypes, and handling all lassloader registration.Historially, maros have been used to handle registration, but these have a huge number of limitations. Wenow have a new proess whih, while a tad more verbose, is far, far superior is many ways (the only down-sidebeing its verbosity). i like to all them...12.1 �Supermaros�s11n uses generi �supermaros� to register anything and everything. A supermaro is a header �le whih iswritten to work like a C++ maro, whih essentially means that it is designed to be passed parameters andinluded, potentially repeatedly.Use of a supermaro looks something like this: 52

#define MYARG1 �some string�#define MYARG2 foo::AType#inlude �my_supermaro.hpp�By onvention, and for lient onveniene, the supermaro is responsible for unsetting any arguments it expetsafter it is done with them, so lient ode may repeatedly all the maro without #undef'ing them.Sample:#define S11N_TYPE MyType#define S11N_TYPE_NAME "MyType"#define S11N_SERIALIZE_FUNCTOR MyType_s11n#inlude <s11n.net/s11n/reg_s11n_traits.hpp>#define S11N_TYPE MyOtherType#define S11N_TYPE_NAME "MyOtherType"#define S11N_SERIALIZE_FUNCTOR MyOtherType_s11n#inlude <s11n.net/s11n/reg_s11n_traits.hpp>While the now-outmoded registration maros are (barely) suitable for many non-templates-based ases, super-maros allow some - er... TONS - of features whih the simpler maros simply annot ome lose to providing.For example:
• A supermaro an handle almost any ase, using a single - yet extendable - interfae, and more omplexvariants an implement their own supermaro �le.
• Supermaros an do arbitrary tasks, like lassloader registration, freeing lients of this task.
• Arbitrary new sets of supermaros an be introdued at any time without impating existing ode, whihmeans, for example, lient ode an use a #define to swtih between interfaes by inluding di�erentregistration maros.
• ODR violations an be more easily eliminated (in theory, ompletely), as eah supermaro is free toimplement its internals however it wants. e.g. if it uses a ustom lassloader registration tehnique itannot ollide with those used by other registerers.
• As they are implemented in �real header ode�, they are ompletely immune to the limitations of maros,and simply muh easier to maintain.
• This approah does ALL neessary registration, inluding lassloader registration (ould not be reliablydone via the maro approah, due to ODR-violation possibilities).
• Supermaros an be arbitrarily large, wheres maros get very tedious to edit one they are longer than afew lines.
• They are muh, muh easier to debug when something doesn't ompile: unlike onventional maros, weeven get proper �le names and line numbers (yes!!!!).The adoption of the supermaro mehani into s11n 0.8 opened up a huge number of possibilities whih weresimply not pratial to do before, and impliations are still not fully appreiated/understood.12.2 General: Interfae TypesAll of s11n's ativity is �keyed� to a type's Interfae Type. This is used for a number of internal mehanisms,far too detailed to even properly summarize here. A InterfaeType represents the base-most type whih a�registration tree� knows about. In lient/API terms, this means that when using a heirarhy of types, thebase-most Serializable type should be used for all templatized InterfaeType/SerializableType parameters.(See, it's di�ult to desribe!)In most usage using InterfaeTypes as key is quite natural and normal, but one known ase exists where theyan be easily onfused:Assume we have this heirahy: 53

AType <�[extended by℄ � BType <� CTypeIn terms of mathing InterfaeType to subtypes, for most purposes, that looks like this:
• BType's InterfaeType is AType
• CType's InterfaeType is ATypeThere are valid ases where registering both AType and BType as bases of CType are useful, but doing so inthe same ompilation unit will fail with the default registration proess, with ODR ollisions. The need to dothis is rare (or non-existant, for most pratial purposes), in any ase, and requires a good understanding ofhow the lassloader works. Doing it is very straightforward, but requires a bit of lient-side e�ort.12.3 Choosing lass names when registerings11n does not are what lass names you use. We ould all, e.g. std::map<string,string> �fred� and theend e�et is the same. In fat, we ould also all the pair type ontained in that map �fred� - without getting aollision - beause it uses a di�erent lassloader than the map (beause they have di�erent InterfaeTypes, asdesribed in setion 12.2).The important thing is that we are onsistent with lass names. One we hange them, any older data will notbe loadable via the lassloader unless we expliitely alias the type names via the fatory's aliasing API (sees11n::l::lassloader_alias()).By onvention, s11n uses a lass' C++ name, stripped of spaes and any onst and pointer parts. The �noise�parts are, it turns out, irrelevant for purposes of lassloading and ause ompletely unneessary maintenanein other parts of the ode (inluding, potentially, lient ode). Thus, when s11n saves a (std::string) or a(std::string *) the type name s11n uses will be �std::string� (or even �string�) for both of them, and the ontextof the de/serialization determines whether we need to dynamially alloate pointers or not. It is, of ourse, upto lient ode to dealloate any pointers reated this way. For example, when deserializing a list<string*>,the lient must free the list entries. (Tip: see s11n::leanup_serializable() for a simple, generi way toaomplish this.)12.4 Registering Interfae Types supporting serialization operatorsAs of s11n 0.8, s11n �requires� so-alled Default Serializables to be registered. In truth, they don't have to befor all ases, but for widest ompatibility and ease of use, it is highly reommended. It is pretty painless, andmust be done only one time per type:#define S11N_TYPE ASerType#define S11N_TYPE_NAME "ASerType"#inlude <s11n.net/s11n/reg_s11n_traits.hpp>The registration of a subtype of ASerType looks like:#define S11N_BASE_TYPE ASerType#define S11N_TYPE BSerType#define S11N_TYPE_NAME "BSerType"#inlude <s11n.net/s11n/reg_s11n_traits.hpp>The S11N_xxx maros are #undef'ed by the registration ode, so lient ode need not do so, and may registerseveral lasses in a row by simply re-de�ning them before inluding the supermaro ode.12.5 Registering types whih implement a ustom Serializable interfaeIf a lass implements two serialization funtions, but does not use operator() overloads, the proess is simplya minor extension of the default ase desribed in the previous setion. We must do two things:First, de�ne a funtor whih, in its Serialization Operators, forwards the all to MyType's serialization interfae.An example of suh a funtor: 54

strut MyType_s11n {// note that the proxy lass name is unimportant: Gary Boone ame up with the XXX_s11n onventioni adopted ittemplate <typename NodeType>bool operator()(NodeType & dest, onst MyType & sr) onst {return sr.loal_serialize_funtion(node);}template <typename NodeType>bool operator()(onst NodeType & dest, MyType & sr) onst {return sr.loal_deserialize_funtion(node);}};Seond, before inluding the registration supermaro as shown in the previous setion, simply add one or bothof these de�nes:#define S11N_SERIALIZE_FUNCTOR MyType_s11n#define S11N_DESERIALIZE_FUNCTOR MyType_s11n // OPTIONAL: defaults to S11N_SERIALIZE_FUNCTORThe seond funtor is only neessary if you de�ne separate funtor lasses for de/serialization operations. Inthe vast majority of asses one proxy handles both de/serialize operations, so the seond maro need not be set.That's it - you're done telling s11n how to talk to your loal serialization API. Now alls to s11n::de/serialize()will end up routing through the loal_de/serialize_funtion() API.12.6 Registering Serializable ProxiesIn fat, there is no one single way to do this, beause there are several piees to a registration:The important things are:
• Proxied (not proxy) type must be registered with appropriate lassloader: monomorphs register with theirown, as do Interfae/Base-most Types, and sublasses register with their Interfae Type's lassloader.
• s11n_traits<ProxiedType>::lass_name() should return the lass name whih s11n will use for thetype. For monomorphs the library an �gure this out on its own, but needs help with polymorphi typenames. As a general rule, this annot be ahieved in this funtion for polymorphs, whih is why we saythat serialize operators for polymorphs must always expliitely set their orret (sub)type name.
• An s11n_traits<> speialization installed (setion 6.2).After months of experimentation, s11n re�nes the proess to simply alling the following supermaro:#define S11N_TYPE ASerType#define S11N_TYPE_NAME "ASerType"#define S11N_SERIALIZE_FUNCTOR ASerType_s11n// optional: #define S11N_DESERIALIZE_FUNCTOR ASertType_des11n// DESERIALIZE defaults to the SERIALIZE funtor, whih works fine for most ases.#inlude <s11n.net/s11n/reg_s11n_traits.hpp>Note that the names of the de/serialize funtors shown here are arbitrary: you'll need to use the name(s) ofyour proxy type(s).This is repeated for eah proxy/type ombination you wish to register. The maros used by reg_s11n_traits.hppare temporary, and #undef'd when it is inluded.There are other optional maros to de�ne for that header: see reg_s11n_traits.hpp for full details.If we extend ASerType with BSerType, B's will look like this:#define S11N_BASE_TYPE ASerType#define S11N_TYPE BSerType#define S11N_TYPE_NAME "BSerType"#inlude <s11n.net/s11n/reg_s11n_traits.hpp>Without the need to speify the funtor name - it is inherited from the type set in S11N_BASE_TYPE.55

12.7 Where to invoke registration (IMPORTANT)It is important to understand exatly where the Serializable registration maros need to be, so that you an plaethem in your ode at a point where s11n an �nd them when needed. In general this is very straightforward,but it is easy to miss it.At any point where a de/serialize operation is requested for type T via the s11n ore framework (inludings11nlite), the following onditions must be met:
• The Serializable registration implementation ode for T must be available to s11n. In pratie, this meansthat the registration ode must be available to the the lient ode requesting the operation at the time itis ompiled.
• T must be a omplete type, not, e.g. de�ned only via a forward delaration. (T's implementation neednot be available, only its interfae delaration.)Beause of s11n's templated nature, these rules apply at ompile time. This essentially means that the regis-tration should generally be done in one of the following plaes:
• T's header �le. Most straightforward, but also the sloppiest, as is ties type T very losely to libs11n.This may also inrease ompile times notieably, as it requires inluding other s11n-related headers whihmight otherwise have no reason to be in your header �les.
• The implementation �le(s) alling the serialization operation. (Be areful to avoid undue dupliation ofmaro alls, for maintenane reasons and to avoid ODR violations.)
• When Serializables are ompiled to standalone DLLs, whih is neessarily a polymorphi operation unders11n's lassloading model, the lass' soure �le is a good plae to put it, as it will only be ompiled (andneeded) in that one plae.
• A separate header reated exlusively for this purpose, whih is inluded by any ode whih initiatesde/serialize operations on T objets. For example, we might have T.hpp and T_s11n.hpp, with the latterhandling s11n registration. This is probably the leanest solution for non-trivial projets, and is generallythe approah taken by s11n's author. It also allows us to ship T_s11n.hpp as an �add on� to other ode,available for optional inlusion by other s11n-using lients.
• In the simplest lient-side ase, a main.pp with all implementation ode in that �le, simply all themaros right after eah lass' delaration. If you later refator lasses out of the main �le, move theirregistration ode to one of the plaes mentioned above.12.7.1 Hand-implementing the maro ode (IMPORTANT)Whenever these dos refer to alling a ertain maro, what they really imply is: inlude ode whih is funtionallysimilar to that generated by the published maro. This ode an be hand-written (and may need to be for someunusual ases), generated via a sript, or whatever. In any ase, it must be available when s11n needs it, asdesribed above.13 Proxies, funtors and algorithms"Politis is for the moment, an equasion is for eternity."Albert Einsteins11n's proxying feature is probably its most powerful apability. s11n's ore uses it to proxy the ore de/serializealls between, e.g. FooClass::save_state() and OtherClass::operator().Note that any non-serializable type whih s11n proxies is atually a Serializable for all purposes in s11n. Thus,when these dos refer to a Serializable type, they also imply any proxied types. The proxies, on the other hand,are not tehnially Serializables.How to register a type as a proxy is explained in setion 12.6.Most of the lasses/funtions listed in the setions below live in one of the following header �les:56

<s11n.net/s11n/algo.hpp><s11n.net/s11n/proxy/listish.hpp><s11n.net/s11n/proxy/mapish.hpp>The whole library, with the unfortunate exeption of the Serializer lexers, is based upon the STL, so experienedSTL oders should have no trouble oming up with their own utility funtors and algorithms for use with s11n.(Please submit them bak to this projet for inlusion in the mainstream releases!)It must be stressed there is nothing at all speial or �sared� about the algorithms and proxies supplied withthis library. That is, lients are free to implement their own proxies and algorithms, ompletely ignoring anyprovided by this library. If you want, for example, a partiular list<T> speialization to have a speial proxy,that an be done.13.1 Commonly-used ProxiesThis setion brie�y lists some of the available proxies whih are often useful for ommon tasks.To install any of these proxies for one your types, simply do this:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�#define S11N_SERIALIZE_FUNCTOR serialize_proxy// #define S11N_DESERIALIZE_FUNCTOR deserialize_proxy// ^^^^ not required unless noted by the proxy's dos.#inlude <s11n.net/s11n/reg_s11n_traits.hpp>When writing proxies, remember that it is perfetly okay for proxies to hand work o� to eah other - theymay be hained to use several �small� serializers to deal with more omplex types. As an example, thepair_serializable_proxy an be used to serialize eah element of any map. If you write any generi proxiesor algorithms whih are ompatible with this framework, please submit them to us!13.1.1 I/OStreamable types: s11n::streamable_type_serialization_proxyThis proxy an handle any Streamable type, treating it as a single Serializable objet. Thus an int or floatwill be stored in its own node. While this is de�nitely not spae-e�ient for small types, it allows some very�exible algorithms to be written based o� of this funtor, beause PODs registered with this proxy an betreated as full-�edged Serialiables.Proxies for the most ommon PODs ome with the library. To register suh a proxy, simply do:#inlude <s11n.net/s11n/proxy/pod/TYPENAME.hpp>If a POD type you are using does not have a proxy header, look at the existing proxies to see how to do this.13.1.2 Arbitrary list/vetor types: s11n::list::list_serializable_proxyThis �exible proxy an handle any type of list/vetor ontaining Serializables. It handles, e.g. list<int> andvetor<string*>, or list<pair<string,double*>>, provided the internally-ontained parts (like the pair) areSerializable. Remember, the basi PODs are inherently handled, so there is need to register the ontained-in-listtype for those or std::string.Registration ode for the standard list types an be inluded like so:#inlude <s11n.net/s11n/proxy/std/list.hpp>#inlude <s11n.net/s11n/proxy/std/vetor.hpp>#inlude <s11n.net/s11n/proxy/std/set.hpp>#inlude <s11n.net/s11n/proxy/std/multiset.hpp>#inlude <s11n.net/s11n/proxy/std/deque.hpp>Trivia:The soure ode for this type shows an interesting example of how pointer and non-pointer types anbe treated identially in template ode, inluding alloation and dealloation objets in a way whihis agnosti of this detail. This makes some formerly di�ult ases very staightforward to implementin one funtion. 57

13.1.3 Streamable maps: s11n::map::streamable_map_serializable_proxyThis proxy an serialize any std::map-ompliant type whih ontains Streamable types. This inlude std::multimap.13.1.4 Arbitrary maps: s11n::map_serializable_proxyLike list_serializable_proxy, this type an handle maps ontaining any pointer or referene type whih isitself a Serializable.Registration ode for the standard map types an be inluded like so:#inlude <s11n.net/s11n/proxy/std/map.hpp>#inlude <s11n.net/s11n/proxy/std/multimap.hpp>There is one minor aveat to keep in mind regarding the map proxies: during leanup after a failed deserialization(setion 6.2.1), the leanup routines annot expliitely lean up the keys of the maps beause they are onst.In the vast majority of the ases, this is no issue at all. It is only a problem when the keys are pointers. Inthis ase, deserialization will reate the objets, but the failed-deser leanup proess annot dealloate them.If you have maps ontaining keys of a pointer type, you should be ertain to ath any deserialization failuresinvolving the map and dealloate the pointers.13.1.5 Arbitrary pairs: s11n::map::pair_serializable_proxyLike list_serializable_proxy, this type an handle pairs ontaining any pointer or referene type whih isitself a Serializable.This proxy an be installed for std::pair types with:#inlude <s11n.net/s11n/proxy/std/pair.hpp>13.2 Commonly-used algorithms, funtors and helpersThe list below summarizes some algorithms whih often ome in handy in lient ode or when developing s11nproxies and algorithms. Please see their API dos for their full details. Please do not use one of these withoutunderstanding its onventions and restritions.More funtors and algos are being developed all the time, as-needed, so see the API dos for new ones whihmight not be in this list.funtion() or funtor Short desriptions11n::[list,map℄::free_[list,map℄_entries() Dealloates list/map entries. Not for nested ontainers.s11n::reate_hild() Creates a named data node and inserts it into a given parent.s11n::find_hild_by_name() Finds a sub-node of a node using its name as a searh riteria.s11n::leanup_serializable() and leanup_ptr() Use to generially dealloate Serializable objets.s11n::map::de/serialize_streamable_map() Do just that. Supports any map ontaining only i/ostreamable types.s11n::map::de/serialize_[map/list/pair℄() De/serialize maps/pairs of Serializables.s11n::list::de/serialize_streamable_list() Ditto, for list/vetor types.s11n::objet_referene_wrapper Refer to an objet as if it is a referene, regardless of its pointerness.s11n::abstrat_reator Consolidates stak/heap alloation into one API.As of version 1.1.3, eah of the list/map/pair algorithms, plus many of the main algorithms, have an equivalentfuntor with the same name, plus a su�x of _f (as in �funtor�). e.g., serialize_map()== serialize_map_f.13.3 When proxies aren't desiredOftentimes, installing a proxy for a type whih will be s11n'd at only one ode-point is simply overkill. Thereare also ases where proxies annot be used for a given type T beause a di�erent proxy has already installedfor T: installing two proxies for one type results in an ODR violation.In many ases we don't need to install proxies in order to be able to use them. When we, as the designers ofserialization algorithms, know that our data an be handled without installing a proxy, we an sometimes useavailable algorithms diretly to ahieve the same e�ets:58

#inlude <s11n.net/s11n/proxy/listish.hpp> // list-type algostypedef std::list<std::string> SList;...SList mylist;...s11n::list::serialize_streamable_list(destnode, mylist); // no list proxy neededThat partiular algorithm only supports lists ontaining i/ostreamable types, whih do not need a proxy. Onthe other hand, if we do the following, we would be using a proxy for both our list and string types:#inlude <s11n.net/s11n/proxy/std/list.hpp>#inlude <s11n.net/s11n/proxy/pod/string.hpp>s11n::serialize(destnode, mylist); // list and string both need a proxy here!Many of the generi proxies provided with the library need to serialize ontained members, e.g. all of the�non-streamable� ontainer-related algos, and use s11n::[de℄serialize() to to do so. This means that they willindiretly require some form of proxy to be installed for their ontained types, or will require that the type tobe serialized be-a serializable.13.4 Funtor tagsAs of version 1.1.3, the library delares a number of empty struts as tags for proxies. This allows the following:
• Clearer understanding of the API, as we an now physially stamp all funtors with a ategory label (orlabels). This is one approah to saying �funtor X models onept Y,� and tagging allows us to turn aonept into more than a note in the doumentation.
• A nie side e�et of tagging is that when when generating API dos/lass hierarhy views (e.g., withDoxygen), all tagged struts get grouped by inheritene (tag type). This makes the library easier to geta mental grip on.
• May allow us to use operator and template overloading to assist in omposition of funtors. e.g., we anompose two nullary de/ser funtors into a single nullary funtor returning (f1 && f2). With operatoroverloads and template metaprograming, using the tag types to guide the way, we ould potentially write(f0 = f1 && f2 && f3) to generate a funtor whih lazily alls three de/ser operations, applying normallogial-and behaviour if either f1 or f2 fail. This will be easier to implement one the C++ TR1/std::tr1is out in the wild (it ontains muh better general funtor support than the STL).See the �le tags.hpp for the full list of tags and the onventions they imply.Beause the de/serialization API has a narrow set of ore funtions, and a onsistent API amongst them, it ishoped that we an reate some s11n-spei� ompositions without having to inlude a full-�edged ompositionframework like one provided by Boost.14 Data Formats (Serializers)"...ontrol is a degree of inhibition, and a system whih is perfetly inhibited is ompletely frozen."Alan W. Watts, The BookThat quote might seem a bit out of plae, but it is justi�ed: the format of a data �le is one way of imposingontrol over the data. Indeed, all stored data is stored in some format or other. In projets whih support asingle data format (or small number of them), it is not unommon for the format itself to beome a limiting fatorin the projet's development at some point. That's just plain wrong vis-a-vis modern development tehniques,and we will have none of it. One of s11n's goals is to free lients from the restrition of a single format, or evena pair of formats, so that the seletion of a data format beomes a bakground detail, as opposed to a majordesign deision. In addition to shipping with support for several data formats, users are free to add their ownformats on top of the ore library. 59

Ignorane of data formats is all �ne and good, but having a serialization library whih doesn't ship withsupport for any formats at all is nearly useless. This setion overs the s11n::io layer, whih is the �default�i/o implementation for the library.The s11n::io namespae provides an interfae, generially known as the Serializer interfae, whih de�nes howlient ode initializes a load or save request but spei�es nothing about data formats. Indeed, the i/o layer ofs11n is implemented on top of the ore serialization API, whih was written before the i/o layer was, and theore is 100% independent of the s11n::io layer.14.1 General onventionsHowever data-format agnosti s11n may be, all supported data formats have a similar logial onstrution. Thebasi onventions for data formats ompatible with the s11n model are:
• Eah data �le ontains exatly one root node, per long-standing DOM onventions.
• Nodes may represent any Serializable type, with all that that implies, or �raw� S11n Nodes nodes (storinginformation not stritly assoiated with a spei� C++ lass).
• Nodes may ontain an arbitrary number of hild nodes.
• Nodes must have a name meeting the riteria spei�ed in setion 5.3. The name need not be unique withinthat branh of the tree.
• Nodes must have an �implementation lass name� property set to the lass name of the type for whihthe node ontains data. This is used by the lassloader when deserializing the node. It is aept-able to use �dummy names� here, provided someone knows how to handle the data without knowingits lass name (e.g. the funtions desribed in in setion 10.4 work this way). In this library we uses11n::node_traits<NodeType>::lass_name(node) to set the lass name of a node.
• Nodes may ontain an arbitrary number of key/value pairs, alled properties:� Propery keys must be unique within any given node, and �should� ontain only alpha-numeri har-aters or undersores, for ompatibility with the widest variety of i/o formats. See setion 5.3 for thegeneral guidelines.� Property values may be of any Streamable Type (not pointers) whih supports de/serialization viathe standard C++ istream>> and ostream<< operators.All that is basially saying is, the framework expets that data an be strutured similarly to an XML DOM.Pratie implies that the vast majority of data an be easily strutured this way, or an at least be strutured ina way whih is onvertable to a DOM. Whether it is an e�ient model for a given data set is another questionentirely, of ourse.14.1.1 File extensionsFile extensions are irrelevant for the library - lient �les may be named however lients wish. Clients are ofourse free to implement their own extention-to-format or extension-to-lass onventions. (i tend to use the �leextension .s11n, beause that's really what the �les are holding - data for the s11n framework.)14.1.2 IndentationMost Serializers indent their output to make it more readable for humans. Where appropriate they use hardtabs instead of spaes, to help redue �le sizes. There are plans for o�ering a toggle for indention, but whereexatly this toggle should live is still under onsideration. On large data sets indentation an make a signi�antdi�erene in �le size - to the order of 10% of a �le's size for data sets ontaining lots of small data (e.g. integers).14.1.3 Entity translationMany (most) i/o formats supported by s11n require some form of string translations in order to store data whihmight otherwise be onfused as part of their grammars. These translations happen transparently to users, butit is useful to know about them beause: 60

• You may want to hand-edit your data, in whih ase you need to ensure that you properly �esape�(translate) your data.
• You might want to save data whih has subtle inompatibilities with ertain formats.The translations done by eah Serializer are de�ned in the API doumentation for the Serializer lass.As an example of the seond point, let's onsider that we are saving the raw string �<<>>�. Most of youwill reognize those haraters from XML, HTML, or the like. That string will almost ertainly ause problem inthe XML-related Serializers, not at serialization-time, but at deserializaiton-time. The reason is beause it maygo through the following transformations (depending on the ontext and the parser, but this is a worst-ase):Serialize == �<<>>�Deserialize == �< <> >�That deserialized result is ertainly not what we saved!This partiular problem is only likely to arrise when storing text for use in higher-level parsers, e.g. HTML, andwill not happen when storing numbers, simple strings, and the like. The generi translation ode has provento work rather well over the past 1.5+ years, but may get onfused in some unusual ases. If you �nd spei�errors, please report them to us (and send us the data �le, if possible).So, though the library is format-agnosti, its users probably should not be. Of the urrent Serializers, onlyompat does no translations, whih makes it suitable for use as a data format in ases where the user isonerned about any sort of translation-related mangling. (However, that format is also the least human-readable and not easily hand-editable.)14.1.4 Magi CookiesThis information is mainly of interest to parser writers and people who want to hand-edit serialized data orgenerate it from non-libs11n soures, like Perl sripts.Eah Serializer has an assoiated "magi ookie" string, represented as the �rst line of an s11n data �le. In theexamples shown in the following setions the magi ookie is shown as the �rst line of the sample data. This stringshould be in the �rst line of a serialized �le so the data readers an tell, without trying to parse the whole thing,whih parser is assoiated with a �le. The input parsers themselves do not use the ookie, but it is required byode whih maps ookies to parsers. This is a ruial detail for loading data without having to know the data for-mat in advane. (Tip: it uses s11n::l::lassload<SomeSerializerInterfaeType>(first_line_of_input_stream)).Note that the i/o lasses inlude this ookie in their output, so lients need not normally even know the ookieexists - they are mentioned here mainly for the bene�t of those writing parsers, so they know how the frameworkknows to selet their format's parser, or for those who wish to hand-edit s11n data �les.Be aware that s11n onsumes the magi ookie while analyzing an input stream, so the input parsers do not gettheir own ookie. This has one minor down-side - the same Serializers annot easily support multiple ookies(e.g. di�erent versions). However, it makes the streaming simpler internally by avoiding the need to bu�er thewhole input stream before passing it on.See s11n/io/serializers.hpp for the API for adding new Serializers to the framework.Versions 0.9.7 and higher support a speial ookie whih an be used to load arbitrary Serializers without havingto pre-register them. If the �rst line of a �le looks like this:#s11n::io::serializer ClassNamethen ClassName is lassloaded as a Serializer (a subtype of s11n::io::data_node_serializer<>) and, ifsuessful, that objet is used to parse the remainder of the stream. Versions 1.1.0+ supports an additionalform, funtionally idential to the above:#!/s11n/io/serializer ClassName14.2 Overview of available SerializersThis setion brie�y desribes the various data formats whih the inluded Serializers support. The exat dataformat you use for a given projet will depend on many fators. Clients are free to write their own i/o support,and need not depend on the interfaes provided with s11n.61

Basi ompatibility tests are run on the various de/serializers, and urrently they all seem to be equally ompat-ible for �normal� serialization needs (that is, the things i've used it for so far). Any known or potential problemswith spei� parsers are listed in their desriptions. No signi�ant ross-format inompatibilities are knownto exist, with the exeption that the expat_serializer is XML-standards ompliant, and is very unforgivingabout things like numeri node names.In some versions of s11n the available Serializers are shipped as DLLs, not linked in diretly with the library.In these environment,s s11nlite tries to auto-load the �known� Serializers (those desribed below) at startup,but lients will have to load their own DLLs if they have ustom serializers. See the s11n::plugin API andthe existing Serializers for how this is done.14.2.1 ompat (aka, 51191011)Serializer lass: s11n::io::ompat_serializerThis Serializer read and writes a ompat, almost-binary grammar. Despite its name (and the initial expeta-tions), it is not always the most ompat of the formats. The internal �dumb numbers� nature of this Serializer,with very little ontext-dependeny to srew things up while parsing, should make it suitable for just about anydata.Known limitations:
• Hand-editing it is very di�ult. The data's sizes are enoded in the stream, preeeding the data, and anyhange in the data requires an update to the size - failing to do so e�etively orrupts the data.
• Node/key/lass names are limited to 255 haraters.
• Property data is �limited� to 4GB per property.Sample:5119101136f108somenode06NoClasse101a0003foo...14.2.2 expatxmlSerializer lass: s11n::io::expat_serializerThis Serializer, added in version 0.9.2, uses libexpat37 and is only enabled if the build proess �nds libexpaton your system. It is grammatially similar to funxml (setion 14.2.4), but �should� be more robust beause ituses a well-established XML parser. Additionally, it handles self-losing nodes, something whih funxml doesnot do.Known limitations/aveats:
• Does only very rudimentary harater translation for XML entities - just enough for the input parser toreliably handle it. This will be �xed when problemati data atually shows up in a use-ase.
• Not thread-safe: it is not safe to read from more than one of these objets at a time, e.g. in a lient/serverenvironment.
• XML standards ompliant, whih means it does not tolerate extensions supported by the other s11n XMLformats, like numeri node names.Sample:<!DOCTYPE s11n::io::expat_serializer><nodename lass=�SomeClass�><property_name>property value</property_name><prop2>value</prop2><empty_property/><empty_lass lass=�Foo�/></nodename>36�5119� is as lose to �s11n� as i ould get with integers. �1011� represents the data format version (there was a predeessor in0.6.x and earlier).37http://expat.soureforge.net 62

14.2.3 funtxt (aka, SerialTree 1)Serializer lass: s11n::io::funtxt_serializerThis is a simple-grammared, text-based format whih looks similar to onventional on�g �les, but with someimportant di�erenes to support deserialization of more omplex data types.This format was adopted from libFunUtil, as it has been used in the QUB projet sine mid-2000, and shouldbe read-ompatible with that projet's parser. It has a very long trak reord in the QUB projet and anbe reommended for a wide variety of ommon uses. It also has the bene�t of being one of the most human-readable/editable of the formats.Known aveats/limitations:
• Known to have problems reading some unusual string ontruts, suh as properties whih start with aquote but do not end with one.Sample:#SerialTree 1nodename lass=SomeClass {property_name property valueprop2 property values an \span lines.# omment line.hild_node lass=AnotherClass {... properties ...}}Unlike most of the parsers, this one is rather piky about some of the ontrol tokens38:
• Closing braes must be on a line by themselves.
• Eah property must be on its own line, but may span lines if eah newline is bakslash-esaped. Suhnewlines are retained when the data is read in.This parser aepts some onstruts whih the original (libFunUtil) parser does not, suh as C-style ommentbloks, but those extensions are not doumented beause i prefer to maintain data ompatibility with libFunUtil,and they play no role in the automated usage of the parser (they are useful for people who hand-edit the �les,though).14.2.4 funxml (aka, SerialTree XML)Serializer lass: s11n::io::funxml_serializerThe so-alled funxml format is, like funtxt, adopted from libFunUtil and has a long trak-reord. This �leformat is highly reommended, primarily beause of its long history in the QUB projet, and it easily handlesa wide variety of omplex data.Known limitations/aveats:
• Does only very rudimentary harater translation for XML entities - just enough for the input parser toreliably handle it. This will be �xed when problemati data atually shows up in a use-ase.
• To help support the various ontainer serialization funtions (setion 10.4), this parser aepts node nameswhih are numeri. That feature is not ompatible with XML standards, and data �les whih use thisfeature may not be loadable by most XML tools without some �ltering.
• Does not parse self-losing elements, e.g. <node ... />.Sample:<!DOCTYPE SerialTree><nodename lass=�SomeClass�><property_name>property value</property_name><prop2>value</prop2><empty></empty></nodename>38Hey, it was my �rst lexer - gimme a break ;). Also, i wanted it to be ompatible with libFunUtil's.63

14.2.5 parensSerializer lass: s11n::io::parens_serializerThis serializer uses a ompat lisp-like grammar whih produes smaller �les than the other Serializers in mostontexts. It is arguably as easy to hand-edit as funtxt (setion 14.2.3) and has some extra features spei�allyto help support hand-editing. It is arguably the best-suited of the available Serializers for simple data, likenumbers and simple strings, beause of its grammati ompatness and human-readability.Known limitations:
• No partiular problems known.Sample:(s11n::parens)nodename=(ClassName(property_name value may be a \(�non-trivial�\) string.)(prop2 prop2)subnode=(SomeClass (some_property value))(* Comment blok.subnode=(NodeClass (prop value))Comment bloks annot be used in property values,but may be used in lass bloks (outside of a property)or in the global sope, outside the root node (but afterthe magi ookie).*))This format generally does not are about extraneous whitespaes. The exeption is property values, whereleading whitespae is removed but internal and trailing whitespae are kept intat.When hand-editing, be sure that any losing parenthesis [some people all them braes℄ in propery values arebakslash-esaped:(prop_name ontains a \) but that's okay as long as it's esaped.)Opening parens may optionally be esaped: this is to help out Emas, whih gets out-of-syn in terms ofindention and paren-mathing when only the losing parens are esaped. When saving data the Serializer willesape both opening and losing parens.Historial speulation: that might explain why, in STL doumentation, they denote iterator be-gin/end ranges in the form [B,E), where �[� means inlusive and �)� means exlusive. If thesymbols were de�ned the other way around, suh that (B,E℄ had the same meaning as above,emas's paren-mathing and indention modes would get out of syn, whih would most ertainlyhave frustrated the designers of the STL. :) Even if that is not the ase - whih it is probably isnot - the paren serializer does expliitely have this esaping behaviour to aomodate emas. Yeah,i know that a real, die-hard, lisp-loving emas user [with way too muh extra energy℄ would havesimply implemented paren-serializer-mode... and probably would have implemented the C++-side serializer lass on top of it. And it would work, too, beause emas is just ool that way. But ihaven't got that muh energy, and thus the above-mentioned bakslash hak was introdued.14.2.6 simplexmlSerializer lass: s11n::io::simplexml_serializerThis simple XML dialet is similar to funxml, but stores nodes' properties as XML attributes instead of aselements. This leads to muh smaller output but is not suitable for data whih are too omplex to be used asXML attributes.This format handles XML CDATA as follows:
• Only CDATA wrapped in <![CDATA[a blok like this℄℄> are reognized.64

• At input-time all XML CDATA is stu�ed into the �CDATA� property of the node.
• At output-time any data in a node's CDATA property is not saved as an XML attribute named �CDATA�,but is instead stored as an XML CDATA blok.This is a non-standard extension to data node onventions, so lients whih rely on this feature will be dependenton this spei� Serializer. (Historial note: i wrote this Serializer in Otober, 2003, and have never one usedthe CDATA feature outside of test ases.)Known limitations:
• See the aveats/limitations notes in setion 14.2.4. Most of those apply here.
• Not suitable for use with data whih annot be safely stored as XML attributes. That is, it is �ne forstoring numbers and other simple types, but storing omplex strings may result in Grief (in the form ofun-readable data).
• The XML attribute name �s11n_lass� is reserved for use by the Serializer in storing eah node's lassname.Sample:<!DOCTYPE s11n::simplexml><nodename s11n_lass=�SomeClass�property_name=�property value�prop2=�"quotes" get translated�prop3=�value�><![CDATA[optional CDATA stuff ℄℄><subnode s11n_lass=�Whatever� name=�sub1� /><subnode s11n_lass=�Whatever� name=�sub2� /></nodename>14.2.7 wesnothSerializer lass: s11n::io::wesnoth_serializer�wesnoth� is a simple text format based o� of the ustom data format used in the game The Battle for Wesnoth(www.wesnoth.org).Known limitations:
• New (added in 0.9.14) and not well-tested.
• Does not yet properly support multi-line strings as property data. (At least, it's not tested.)Sample:#s11n::io::wesnoth_serializer[s11nlite_onfig=s11n::data_node℄GeneriWorkspae_size=1066x858s11nbrowser_size=914x560serializer_lass=wesnoth[/s11nlite_onfig℄14.3 Triks14.3.1 Using a spei� SerializerEasy: simply pik the Serializer lass you would like and use its de/serialize() member funtions. Ratherthan inluding its headers, you an load it dynamially:s11nlite::serializer_interfae * serializer = s11nlite::reate_serializer(�parens�);Normally you must selet a lass (i.e., �le format) when saving, but loading an be done transparently of theformat for the vast majority of ases. 65

14.3.2 Seleting a Serializer lass in s11nliteSee reate_serializer(string), whih takes a lassname and an load any registered sublass of s11nlite::serializer_interfae.Alternately, set the framework's default serializer type by alling s11nlite::serializer_lass(string). Asof 1.1, this setting is no longer automatially persistent aross all s11n lients: lient appliations must eitherset this at some point or rely on the ompiled-in default (whih will be some built-in Serializer, but whih oneis not spei�ed by s11nlite's interfae).14.3.3 Multiplexing SerializersThis has never been done, but it seems reasonable:If you'd like to save to multiple output formats at one, or add debugging, aounting, or logging info to a Serial-izer, this is straightforward to do. As of 1.1.2, you an ahieve this by sublassing s11nlite::lient_api<NodeType>and alling s11nlite::instane(). The �hard ore� way to do it would be reate a Serializer. By sublassingan existing Serializer it is straightforward to add your own ode and pass the all on.Saving to multiple formats is only straightforward when the serializer is passed a �lename (as opposed to astream). In this ase it an simply invoke the Serializers it wishes, in order, sending the output to a di�erent�le. Pakaging the output in the same output stream is only useful if this theoretial Serializer an also separatethem later. i an personally see little bene�t in doing so, however (maybe a more reative soul an �nd a leveruse for it, though... e.g. protool-within-protool wrapping for an RPC hannel).14.4 Internals: �ex's role in s11nThis setion is intended only for those interested in the implementations of most of the urrent Serializers. Itwill be of no interest to anyone else.The following Serializers have input parsers written using the ubiquitous GNU Flex tool. While it is a powerfultool, its use in modern C++ projets introdues a ouple hallenges:
• It generates C ode. It an be told to output C++ ode, but this has problems of its own, not the leastof whih is the shortage of doumentation and its �experimental� status sine the late 90's.
• Flex-generated C++ ode will not ompile as-is under modern ompilers beause of striter standardssupport in today's tools. More reent versions of �ex, posted on SoureForge, generate unompilable odeas well, but in other ways. (There's a good reason most Linux distros are still shipping 2.5.4.)
• It is di�ult to introdue more than one �ex-based parser into a projet. The lexer sublassing tehniqueis maro-based, and this ends up ausing no end of grief when mixing parsers in a projets. This ispartiularly troublesome in ombination with templates (whih are normally inlined in headers).
• The lexer ode has to be generated on a system with �ex. This rules out most Win32 systems immediately.Even on Unix systems, the generated ode won't ompile as-is on newer ompilers and has to be pathedup with perl or sed before ompiling it. While this type of manipulation is easy enough to integrate intoUnix-based Make�les, it is not at all trivial for most Win32 environments.i am not proud of the fat that the parsers are built on top of �ex. When starting out writing parsers, it wasthe only tool i knew about, so i used it. And �ex is still, after all these years, the only tool of its kind whih iswell-distributed amongst Unix systems.The main reasons that most of the Serializers are still implemented in �ex, as opposed to re-implementing themin something more modern, are, in order of priority:1. i am so damned sik of writing parsers. i an't look at another one for a while. If you want to do it, iwould be grateful.2. There is no other �universally available� parsing kit for C++ out there. There are lots of projets whoaspire to do this, but many are ommerial, and various ambitious Open Soure projets of this type havepetered out without produing a usable produt.3. The s11n soure tree has a good deal of underlying support ode (both C++ and Make�le rules) tointegrate �ex-based parsers into the library, suh that they an be built as �built-ins� or dynamiallyloaded without the library aring whih they are. That ode's been around a long time and works quitewell, so i'm in no hurry to replae it. Using that bakbone, writing a new �ex-based Serializer is normallyonly a few hours of work. 66

Long-term, i would eventually like to reimplement the parsers in, e.g., Spirit (http://spirit.soureforge.net),but see point #1 in the above list. Initial experimentation with Spirit suggests that it requires that bu�er allinput before tokenization starts. Experiene has shown that this is not an aeptable option for this library, asit an drastially a�et runtime speed of large data sets, and inherently inreases our memory requirements byroughly a fator of one. See setion 25.4 for more information on the impliations of suh a opy.15 lass_name() and friends�A rose by any other name would smell as sweet.�Shakespear�But a lass not derived from T is-not-a T.�Anonymous Software DeveloperOne upon a time - the �rst few months of s11n's development - s11n developed a rather interesting trik forreliably getting a type's name at runtime. Despite how straightforward this must sound, i promise: it is not .C++ o�ers no 100% reliable, in-language, well-understood way of getting something as seemingly trivial as atype's frigging name. While s11n's trik (shown soon) works, it has some limitations in terms of ases whihit simply annot ath - the end e�et of whih being that objets of BType end up getting the lass name oftheir base-most type (e.g. �AType�). Let's not even think about using typeid for lass names: typeid::name()o�ially provides unde�ned behaviour, whih means we won't even onsider it.Historial note:Very early versions of s11n used a typeid-to-typename mapping, whih worked quite well (and didnot require onsistent typeids aross app sessions), but it turns out that typeid(T).name() anreturn di�erent values for T when T is used di�erent ode ontexts, e.g. in a DLL vs linked in tothe main app. Thus that approah was, sadly, abandoned. i even used an external database at onepoint: dump the symbols from your objet �les, using nm, into a �le and we read those at runtime toget the lassnames. While remarkably e�etive, that turned out about as fun to maintain as poisyivy is to play in.To be honest, the details of lass names vis-a-vis s11n, in partiular vis-a-vis lient-side ode, are an amazinglylong story. We're going to skip over signi�ant amounts of bakground detail, theory, design philosophy, et.,and ut to the �hows� and the more signi�ant �whys�.15.1 node_traits<T>::lass_name()Note: in older s11n ode we had an impl_lass() funtion. That was idential to lass_name(),but is long-sine depreated. Some doumentation may still refer to impl_lass() in some ases,but these an be safely understood to mean lass_name().For s11n, a node's metatype lass name is signi�ant at the following points:1. When serializing an objet, the node it is stored in should have its lass_name() set to the objet's lassname. This is trivial to ahieve at the framework level for the majority of (all?) monomorphi types,but impossible to ahieve polymorphially without some small amount of lient-side work. In s11n this�small amount� of work omes in the form of setting a node's lass_name() to the string form of theSerializable's lass' name. This is done in an objet's serialize operator (not deserialize). If a type inheritsSerializable behaviours it must set the lass_name() after alling the inherited behaviour, to avoid thatthe parent type overwrite the lass_name() of the subtype.Note that Serializable Proxies need to set the name of the Serializable type, not to the name of the proxytype. Why? Read the next setion and then it should be lear.2. When deserializing a node to a given InterfaeType, as in this ode:InterfaeType * b = s11nlite::deserialize<InterfaeType>(somenode);s11n asks the InterfaeType's lassloader for an objet of the type mapped to the name stored in67

node_traits<NodeType>::lass_name(somenode). The lassloader, ideally, has a subtype of Interfae-Type registered with that name (or it is InterfaeType's name, or maybe it an �nd the type via a DLLlookup). If so, the lassloader will return a new instane of that type and s11n will hand o� the datanode to it using the internal API marshaling interfaes. If no lass of the given name an be found byInterfaeType's lassloader (other lassloaders are not onsidered), deserialialization neessarily fails, asthere is no objet to deserialize the data into.When a data node is �diretly� handed to a Serializable (e.g. s11nlite::deserialize(srnode,targetserializable)) then the lass name is irrelevant, as s11n must assume that the given nodeand Serializable �belong together�, semantially speaking. This property an be used to store arbitrarydata in nodes and have a omplementary deserialize algorithm or funtor whih understand the �datalayout� within the node. e.g. the various serialize_streamable_xxx() variants use this: eah pair ofde/serialize funtors supports one end of the data's �dialet�, would be one way to put it. This an beused to de/serialize some objets whih are themselves not registered as Serializables, by simply �walking�them in our algorithm. In fat, in this ase the only reason suh types annot be alled true Serializablesis beause s11n's API does not have (is not given) a registered proxy through whih to rediret them.In theory these points are all pretty straightforward, and all should make pretty lear sense. After all, to loada spei� type it must have a lookup key of some type, and a lassname makes a pretty darned onvenient keytype for a lassloader. The lassloader's ore atually supports any key type, but s11n is restrited to strings,mainly for the point just mentioned, but also beause non-strings aren't meaningful in the ontext of doingDLL searhes for new Serializable types. Consider: what should an int key type be useful for in that ontext -interpretting it as an inode number? Thus, s11n internally uses only string-keyed lassloaders. This is not tosay that the string must be the same as a lass' name: you may of ourse use numeri strings.Hopefully the signi�ane of a node's lass name is now fully understood. If not, please suggest how we animprove the above text to make it as straightforward as possible to understand!Side-notes:
• i do honestly believe it to be impossible in C++, using only in-language tehniques, to 100% reliably getthe lass name for polymorphi types, not onsidering options like external (�le-based) lookup tables. iwould be extremely happy to be proven wrong! Please ontat the development mailing list if youknow a magi trik for this!
• s11n atually did use external lookup tables for lass names one, reated by using the nm tool to extratall type names from an appliation/DLL after linking it. The immediate advantage is that it works fairlywell, as it has aess to all lass names used in the binary (app/DLL), but it's umbersome, build-wise,and very memory-hungry, as a huge number of the types in any binary are not at all relevant to the lientfor purposes of s11n (e.g. std::__g_blahblah_internal<Foo *,std::alloator<Foo>>, andwe an't reliably programmatially determine what we ould ut out).15.2 s11n_traits<T>::lass_name(onst T *)In s11n 1.1.0, s11n_traits was expanded to replae the former lass_name<> type (and the sattered kludgeswhih ropped up around it).Many of the shipped algorithms use this API to get node's lass name, as desribed in the previous setion.Clients who have types whih have a funtion allowing them to return their real lass name an speializes11n_traits for their type to allow s11n to internally get aess to the proper lass names. An examplespeialization of this funtion might look like:std::string lass_name(onst T * hint) {if(! hint) return �T�; // return Interfae Type's namereturn hint->lassName(); // assuming T's API has suh a feature}15.3 Class name of �unknown�Sometimes you may see a lass name of �unknown� in your data. This is not neessarily a problem, and an beaused by the following: 68

typedef std::list<std::string> SL;SL li;... populate li ...s11n::list::serialize_streamable_list(destnode, li);Algorithms get their type's name by using s11n_traits<T>, and in the above ase there isn't neessarily ans11n_traits<SL> installed beause the list type was never expliitely registered as a Serializable (it doesn'tneed be to for this ase).This is atually all �ne and good, and will not ause any problems in a ase like the one above. If you desperatelywant to set a lass name, it is okay to manually do so in a ase like this (but not as a general rule: see setion23.5.1).In fat, for all deserialization whih does not involve pointers, the logial lassname of a node is ignored., as thes11n'd data is fed to pre-existing objets. In the ase of pointers, we use the lassname to load the objet andthen pass that objet through the deserialization proess just as we do any non-dynamially-alloated objet.16 Exeptions onventions"I need a woman who an say, 'honey, an you please take a look at this stak trae while I orderthe pizza?' and really mean it."Anonymous Software DeveloperPlease also see the setion 19, whih is losely related to this material.As of version 1.1, s11n attempts to de�ne a set of exeption-related guarantees, suh that we an de�ne thestate of, e.g. a ontainer, when the de/serialization of a hild node fails.It is important to always remember that, like most other software, s11n requires that destrutors never throw. Ifa dtor throws then all exeption guarantees go out the window. Likewise, if a default tor or a opy/assignmenttor throws, guarantees may go bye-bye.The base-most exeption type for the framework is, naturally enough, s11n::s11n_exeption, whih derivesfrom std::exeption and follows the same interfae. The API does not have any throw(xxx) spei�ers onmost funtions. This is to allow the library to propagate user-thrown exeptions without running the riskof unexpeted() being alled (that's C++'s way of rapping out if a funtion throws an exeption whihdoes not math its throw(xxx) spei�ation). All funtions in the API should aommodate the propagationof exeptions, preferably with well-de�ned results. The exat guarantees regarding any throw behaviour areneessarily doumented on a per-algorithm basis, so see the appropriate API dos. Almost all reursive routinesgo through the ore de/serialize and may throw, but the exat de�nition of what happens in the fae of exeptionsmust be de�ned by eah algorithm.Note that no amount of onventions will 100% transparently protet lients from problems suh as memoryleaks. As of version 1.1.3, the library is believed to be able to protet from all leaks it possibly an. It has noknown leaks in valid use ases, and allows lients to extend the leanup support suh that their types an beguaranteed not to leak if a deserialization fails, whether it fails due to an exeption or not.16.1 The library throws when...The ore library itself never throws. It will pass on exeptions, but it does not throw any simply beause allthe real work is delegated.The various layers built around the ore may or may not throw. The guidelines are:
• The support algorithms, like the ontainers proxies, may throw whenever they like. Preondition violationsare prime andidates for throwing.
• The plugins layer does not throw, but urrently only due to dependenies reasons, and this may hangeat some point.
• The i/o layer may throw exeptions whenever it likes.
• s11nlite is primarily a wrapper, and may propagate exeptions passed on through the ore, plugins, i/o,or lient_api<> layers. 69

• The post-failure leanup support expliitely athes and disards all exeptions, to ensure no-throw-on-destrution semantis.Plugin operations are alled during the deserialization proess to �nd unknown types. In theory they maythrow, but they urrently do not. This no-throw poliy is under onsideration, and likely to hange at somepoint.16.2 Throwing from lient-side de/ser operationsLet's onsider the following deserialization operator for lass ST:bool operator()(onst s11nlite::node_type & sr) {typedef s11nlite::node_traits TR;if(! TR::is_set(sr, �some_key�)) {// this is an error in our ase}...}The lient has at least three options for how to handle the error:1. Reover from the error, if possible/desirable. For example, use a default value for the missing data.2. Return false.3. Throw an exeption.Options 1 and 2 have been around sine the beginning of libs11n, but option 3 was introdued in 1.1.0. When alient-side de/serialization algorithm throws, how the internals of the library reat to it depends on a number offators. As of 1.1.3, the major algorithms were reimplemented to dealloate resoures properly on exeptions,using s11n_traits::leanup_funtor (setion 6.2.1). Eah algorithm douments its exat behaviour, but thegeneral overall guaranty is that no memory will go leaked if a deserialization fails. In older library versions, thiswas only true as long as the types whih failed to deserialize managed their own memory (i.e., not standardontainers of pointers, though these are now safely handled).As a rule, if deserialization of an objet fails (returns false or throws), the objet is either unmodi�ed (onlypossible in a few ases) or in an unde�ned state (the majority of ases). A general prerequisites for when wean apply the non-modi�ed guaranty to a Serializable type are:
• A ustom algo must be used for the type, or an existing algo with this guaranty must be used. e.g., thedefault proxies for std::set and std::list use the same deserialization algo, whih happens to provide thisguaranty, thus both of those ontainers provide it when the default algos/proxies are used.
• The type must support an e�ient swap() feature, or something semantially similar. This is beauseone of the simplest, most e�etive, and most e�ient ways to implement this guaranty is by using swap()after deserialization into an intermediary objet sueeds.In fat, this library ould theoretially o�er the unmodi�ed guaranty in even the default-most algorithms,for all types, but this would require that all supported types be opyable via the default C++ opy meh-anisms, whih might not be realisti. It also would not be as inherently generi and e�ient as swap(). ihave reservations against relying on std::swap() as the default behaviour beause it does not guaranty ane�ient swap, it only provides a standardized interfae for the swap feature. Falling bak to std::swap() bydefault would be misleading at best, and may result in unaeptable behaviours in some ases unless swap() isreimplemented/overloaded.

70

16.3 Errors and SerT * deserialize<NodeT,SerT>(onst NodeT &)Consider this perfetly innoent-looking all:T * t = s11nlite::deserialize<T>(mynode);What that does is essentially this:1. Try to instantiate on objet of type node_traits<>::lass_name(mynode), who's interfae Type is T. Ifit fails, we an safely signal an error at that point.2. Calls deserialize(mynode,*theNewObjet). If it sueeds, return theNewObjet. If it fails...Now the orretness of its behaviour is T-dependent. It was not until going over the exeptions support thatthe inherent danger of deleting the failed objet beame apparent. Client-written lasses normally manage theirontained objets' memory, so these are not a problem, but any standard ontainer ontaining pointers is aproblem. If we delete a ontainer objet whih itself ontains pointers or ontains, somewhere nested in itssubomponents, any unmanaged pointers (not owned by their ontaining objet) a deletion of theNewObjetwill ause a memory leak.The s11n_traits::leanup_funtor onvention was developed to reate a safe way for deserialize algorithmsto handle suh an error ase. If an exeption is thrown from deserialize(), or deserialization otherwise fails,the internally-alloated objet an be safely leaned up via the leanup funtor. For example, all of the followingtypes will be lean up properly in the fae of errors, assuming that an appropriate leanup funtor has beende�ned for eah:list<T>list<int>map<int,list<multimap<double,T *> > >(The library's default proxies for these types install working leanup funtors.)See setion 6.2.1 for how this works.16.4 Exeptions and �external modules�i reently (July 2005) bought the book C++ Coding Standards, by Herb Sutter and Andrei Alexandresu. Item62 in the book is entitled �Don't allow exeptions to propagate aross module boundaries,� and explains that,for example, throwing an exeption from a de/serialization algorithm is not atually guaranteed to be safe ifthe exeption �rosses module boundaries.� That is basially to say, thrown from di�erent libraries linked inthe same appliation. Sine s11n is implemented largely in header �les, those parts whih would throw wouldatually throw from your module, beause they are ompiled as part of your ode. There are a few non-templateplaes whih an throw as well. Going the other diretion: if your lass' de/serialization operator throws, thatexeption must go bak through the s11n ore before being passed bak to the aller. That would normally be�ne, but if the lass whih threw the exeption is from another module, it might not be possible for your C++runtime environment to pass the exeption from the algo to s11n's ore. These types of problems are related tomuh lower-level operating system and hardware details than the C++ standard an aommodate, and thusthe implementation depends 100% on your ompiler, linker, and the benevolene of your hosen god(s).That said...In pratie, it is possible to throw aross module boundaries when the throwing module and the modules theerror passes through are ompiled �using the same options�, though what that really means in rather blurry. If,however, you ompile library A on ompiler version 1.0 and then another module under ompiler version 1.2, theresults might not be binary-ompatible enough to pass exeptions between the two. Again, vendor-dependent.Considering that i've been using s11n for almost two years now without an exeption ausing this level of rash,i personally onsider this problem to of little onern. Then again, during most of that time, exeptions wereexpliitely not handled by the library (well, at least not properly), so they were never intentionally thrownduring de/serialization. Sine 1.1.x it is legal to throw, so... pay heed to the above advie.
71

16.5 Spei� guaranteesThe ore algorithms annot provide a spei� guaranty on the state of an objet on whih deserialization fails,but as of 1.1.3 many of the major support algorithms an. By extension, this means that using a Serializabletype whih is handled by these algorithms impliitely gives these guarantees to the ore algorithms.Below is a list of algorithms whih provide the following guarantees on a deserialization failure (inludingexeptions) into a Serializable objet we will all Target:1. Target is not modi�ed.2. Dynamially-alloated resoures ontained in Target are dealloated via the s11n::leanup_serializable()mehanism. (Setion 6.2.1.)3. All exeptions are propagated bak to the aller.e.g., when alling serialize(srnode,mylist), the Target for the deserialization is mylist.Without a doubt, the seond guaranty is the most signi�ant. The �rst guaranty has been waived sine s11n'searliest days, but reent ode reviews and refatorings provided satisfatory solutions to the leanup problem,whih inherently makes the �rst guaranty easier to implement, in partiular for types whih support an e�ientswap operation.The algorithms whih expliitely support this are:
• s11n::list::deserialize_list(...)
• s11n::map::deserialize_pair(...)
• s11n::map::deserialize_map(...)
• TargetT * s11n[lite℄::deserialize(onst NodeType & sr)(In this ase, the T objet might be modi�ed, but the lient will never get the objet if deserializationfails, so the e�et is the same.)Other algorithms might support these guarantees as well - see the API dos for the algorithms used by yourde/serialization proxies/implementations.16.6 Making your Serializables exeption-safeAs of 1.1.3, the s11n::leanup_serializable() mehanism (setion 6.2.1) is de�ned to �lean up� objetswhih fail to deserialize. Originally oneived to lean up standard ontainers of unmanaged pointers, a smallAPI has grown up around that type whih simpli�es leak-protetion in many deserialization ases. Let's onsiderthe following ode, assuming that it is some lient-side ode other than a de/serialize operator:s11nlite::miro_api<MyType> miro;MyType * myObj = miro.load(�myfile.s11n�);if(! myObj) { ... loading failed! ... }...That's all �ne and good, but let's assume that either an exeption is thrown somewhere immediately afterwards,or that you are in fat utterly lazy and do not want to have to manually delete myObj. Both ases have thesame solution, whih is to:1. Make sure we have a valid leanup funtor installed. For types whih manage/own their own internalpointers, the default funtor will do the job - we only need to spei�ally de�ne one for �ontainer-like�types whih hold unmanaged pointers.2. Use s11n::leanup_ptr<MyType> in a manner similar to how we would use std::auto_ptr<MyType>.Now we simply modify the above ode to look like this:s11n::leanup_ptr<MyType> myObj(miro.load(�myfile.s11n�));if(! myObj.get()) { ... loading failed! ... }72

Now, when myObj goes out of sope, s11n::leanup_serializable<MyType>() will be alled to take are ofthe leanup proess. In fat, for types whih manage their own pointers, an auto_ptr<> will have the exatsame e�et for most type, but we show the leanup_ptr<> approah for demonstration purposes. For example,the following ase would not behave as desired with an auto_ptr<>:typedef std::list<MyType *> MyList;s11nlite::miro_api<MyList> miro;MyList * mylist = miro.load(�myfile.s11n�);...If we simply delete mylist, or use an auto_ptr<> to delete it, the pointers in mylist will leak! Depending onthe size of the list and the items it ontains, the leak might be small or huge. In any ase, no leak is aeptablebehaviour.We an lean up any Serializable objet, regardless of pointerness, nestedness, et. with:s11n::leanup_serializable<FoosInterfaeType>(foo);We don't are if foo is a pointer or referene here, and we don't are what subtype it is.When using pointers to Serializables, it is often more onvenient to use leanup_ptr<>, as demonstrated here:leanup_ptr<MyList> mylist(miro.load(�myfile.s11n�));When mylist goes out of sope, or when mylist.lean() is alled, or mylist is otherwise reassigned, the list iswalked and s11n::leanup_serializable<MyType>() is alled on eah entry in the list. The e�et is that thelist entries will get destroyed. Afterwards, the MyList pointer itself (if it is a pointer) is destroyed. If MyListontains another ontainer, e.g., std::vetor<MyType*>, then that ontainer will be walked reursively - theend e�et is the same, regardless of the nesting level. The only requirement is that the ontained type have as11n_traits<>::leanup_funtor whih is designed to work with that type (again, most objets an use thedefault or one of the already-supplied implementations).Keep in mind that leanup_ptr<> is only for use with leaning up registered Serializables, and is not ageneral utility lass! If used on non-Serializables, it will use the default leanup funtor, whih might ormight not have the desired results for any given type. The proxies for the standard ontainers install aleanup handler for their ontainer type, so when proxying standard ontainers, the hard part will be donefor you. In some ases it is essential to write a ustom leanup funtor, however. See the example insr/proxy/reg_list_speializations.hpp for how this is done.17 SAM: Serialization API Marshaling layer�Play it again, Sam!�Common proverbAhtung: SAM is not Beginner's Stu�. This is, as Harald Shmidt puts it so well in a German o�eeadvertisement, Chefsahe - intended for use by the �higher ups.� This is not meant to disourage youfrom reading it, only to warn you that in s11nlite, and probably even when using the ore diretly,you will normally never need to know about SAM. There may be some unusual ases where writinga SAM speialization is just what is needed, however.Ahtung #2: There is a �ne line, and indeed some overlap, between ertain responsibilities ofSAM and those of s11n_traits<>... but the line isn't well-de�ned and the small overlap is atuallya �exibility bene�t (e.g. where is a node's lass_name() set?). In e�et, s11n_traits<> providesthe publi interfae for API marshaling and SAM provides the s11n-internal interfae. Traits andSAM also eah have some very distint responsibilities, and onsolidating them into one type is notplanned.It's time to onfess to having told a little white lie. Repeatedly, even willfully, many times over in this span ofthis doument.The Truth is: 73

s11n's ore doesn't atually implement its own �Default Serializable Interfae�!WTF? If s11n doesn't do it, who does?Following omputer siene's oft-quoted �another layer of indiretion� law, s11n puts several layers of indiretionbetween the de/serialization API and... itself. To this end, s11n de�nes a minimal interfae whih desribesonly what the s11n ore needs in order to e�etively do its work - no more, no less. s11n sends all de/serializerequests through this interfae, whih is generially known as:SAM: Serialization API Marshaling39 layeri admit it: i have, so far, willfully glossed right over SAM. However, i did so purely in the interest of keepingeveryone's brains from immediately going all wahoonie-shaped when they �rst open up the s11n manual. Asyou've made this far in the manual, we an only assume that wahoonie-shaped brains suit you just �ne. If thatis indeed the ase, keep reading to learn the Truth about SAM...17.1 The SAM layer & interfaei've been telling you this whole time that types whih support s11n's Default Serializable Interfae are... well,�by default, they're already Serializables.� In a sense, that's orret, but only in the sense that i've been�abstrating away� the very subtle, yet very powerful, features implied by the existane of SAM. Bear with methrough these details, and then you'll surely understand why SAM is buried so far down in the manual.At the heart of s11n, the ore knows only about these small details:
• SAM's two API funtions and their onventions (whih are idential to those of s11n's ore de/serializefuntions).
• node_traits (setion 6.1), and only a small portion is used internally.
• s11n_traits (setion 6.2).s11n's ore doesn't know anything about anyone's de/serialize interfae exept for that of SAM's. The ore,to be honest, is essentially quite dumb - implemented in a relative handful of lines of ode - looking over theode now i'd guess that, if we don't ount the [de℄serialize_subnode() onveniene funtions, it's less than30 atual ode lines(!!!).SAM de�nes the interfae between s11n's ore and the world of lient-side ode. The following ode reveals theentire lient-to-ore ommuniation interfae:template <typename NodeType,SerializableT>strut s11n_api_marshaler {typedef SerializableT serializable_type;typedef NodeType node_type;stati bool serialize(node_type &dest, onst serializable_type & sr);stati bool deserialize(onst node_type & sr, serializable_type & dest);};(Prior to 1.1.3, the NodeType parameter was a template parameter for the funtions, but not the lass. Thishapter normally refers to the older signature, but this di�erene is insigni�ant for most purposes.)By now that interfae should look eerily familar. Note that stati funtions were hosen, instead of funtor-styleoperator()s, based on the idea that these operations are ativated very often, and i felt that avoiding the ostof suh a frivilous funtor was worth it. Additionally, this interfae de�nes something �solid� for lients, asopposed to s11n's normal onvention of using two overloads of operator(). There's another, somewhat lamer,reason the operator()- style interfae an sometimes ause ambiguity errors, so it needs to be avoided here.SAM speializations may de�ne additional typedefs and suh, but the interfae shown above represents the oreinterfae: extensions are ompletely optional, but redution in the interfae is not allowed.It is important to understand how s11n �selets� a SAM speialization: by the type argument passed as aSerializableType template parameter. Thus, s11n uses a SAM<myobjet's type> speialization. We've jumpedahead just a tad, and it's now time to bak up a step and, with the above in mind, get a better understandingof SAM's plae in the s11n model...39Note that both �marshaling� and �marshalling� are orret spellings of this word. s11n uses the single-l variant beause ispelltold me that was orret ;). 74

17.2 SAM's plae in the API alling hain (and other important notes)After lient ode initiates a de/serialization operation, the proess goes something like this:1. s11n passes o� the all to to s11n_api_marshaler<T>::[de℄serialize(node,obj).2. SAM is now in ontrol of the request. The default SAM implementation simply sets the node's lass name,using s11n_traits<T>::lass_name(), and delegates the request to s11n_traits<T>::[de℄serialize_funtor,as appropriate.3. SAM eventualy returns to the ore, whih then passes the results diretly bak to the user.In API terms, SAM is the internal plae to manipulate the marshaling proess, e.g. to implement ustom APItranslation. The publi interfae for doing so is by speializing s11n_traits for a given type.As a speial ase40, SAM<X *> is single implementation, not intended to be further speialized- see below!Note that in this ontext, �lient ode� might atualy refer to an algorithm or funtor shipped with s11n - asfar as the ore is onerned anything, inluding ommon �onveniene� operations (e.g. hild node reation),whih happen before the the ore alls SAM, and while waiting on SAM, are �lient ode.�17.2.1 More about SAM<X*>A single speialization of SAM<X*> does pointer-to-referene argument translation (sine its SerializableTypeswill be pointer types) and forwards them on to SAM<X> (unless they are 0, in whih ase it simply returnsfalse - e�etively a failed de/serialization attempt). Thus pointers and referenes to Serializables are internallyhandled the same way (where pratial/possible), as far as he ore API is onerned, and both X and (X*) annormally used interhangeably for Serializable types passed to de/serialize operations.The end e�et is that if a lient speializes SAM<Y>, alls made via SAM<Y*> will end up at the expetedplae - the lient-side speialization of SAM<Y>, and the pointer will be dereferened before passing it toSAM<Y>.Some oders show a level of distrust for this �feature�, but pratie has shown that it is 100% non-intrusive,100% preditable, and allows some triks whih are otherwise di�ult to ahieve. In fat, ode related to thisspeialization has not needed any maintenane sine its initial introdution, a bit more than a year ago - it is apure bakground detail.Client ode SHOULDNOT implement any pointer-type speializations of s11n_api_marshaler<X*>41.Clients MAY implement suh speializations, but they're on their own in that ase. As it is, if a lient imple-ments a SAM<X*> speialization the e�ets may range from no e�et to a very di�ult-to-trak desrepenywhen some pointer types aren't passed around the same as others. Then again... maybe that's exatly thebehaviour you need for type (SpeialT*)... so go right on ahead, just be aware of s11n's default handlingof SAM<X*>, and the impliations of implementing a pointer speialization for a SAM. Suh triks are notreommended, and related problems ould be extremely di�ult to trak down later.17.3 Historial hangesIn 1.1.3, the following signi�ant hanges were made to s11n_api_marshaler<>:
• DataNodeType templatized type was moved from the funtions to the lass, to allow for full lient-sidespeialization.
• Moved from an anonymous namespae into the s11n namespae. The anonymous namespae appears tobe unneessary, and may never have been neessary. (It was there for a reason, but that was soooo longago...)40Now that i re-read this, this is one of extremely few �speial ases� in s11n. i have a speial type of non-love for �speial ases�in general, and avoid them in the interfaes at all osts.41... without muh onsideration, that is. There are oneivable uses for this, but they seem to be well beyond the realm of�ommon serialization needs�, and thus we won't dwell on them here.

75

18 s11nlite spei�s"People don't do what they believe in. They just do what's most onvenient, then they repent."Bob DylanThe s11nlite API provides a simpli�ed interfae into s11n. It is intended to simplify the majority of lient-sidealls into the ore library, primarily by abstrating away the Data Node Type whih is so prevalent in the oreAPI. The �lite� API also wraps up the s11n::io API, so it provides a simpler interfae into i/o as well. s11nliteis intended for �top-level� lient use, whereas the ore library is more suitable for implementing the internals ofspei� de/serialization algorithms.This setion overs s11nlite-spei� behaviours whih are not overed by the ore library.While s11nlite is a omplete lient-side interfae into s11n, s11nlite does very little work itself: it mainly forwardsalls to the ore and i/o layers.18.1 Why use s11nlite?(Please also see the notes about s11nlite in setion 2.5.)By using s11nlite as the main lient-side interfae, lient ode an be signi�antly simpli�ed over using the ores11n and s11n::io APIs diretly. The main di�erene is a lot less typing of template types. Also, the bene�tof fewer diret dependenies on s11n-related types should not be underestimated. A onrete example of thesesimpliations, ompare the following two funtion signatures:s11n::serialize<s11n::s11n_node,MyType>(destnode, srobj);s11nlite::serialize<MyType>(destnode, srobj);The di�erent might appear trivial, but trust me, the �rst form gets annoying really quikly.Atually, in the ase of monomorph types and the base-most types in a hierarhy of Serializables, C++'sautomati template type dedution an eliminate the need to be expliit about MyType when using the �rstform. The gotha is in polymorphism: we need to be sure to base the base-most MyType in the hierarhy, so wereally should be expliit when using the �rst form, or the proper underlying helper types might not be seleted(those assoiated with the base interfae in the hierarhy), whih ends up leading to onfusing ompile errorsor potentially runtime errors.Some developers might reommend swapping the order of the template args in s11n::somefun<NodeT,OtherT>(),as node types are almost always monomorphi and thus their types an be aurately dedued. That wouldlead to lient-side alls like:s11n::serialize<MyType>(destnode, srobj);Early versions of s11n had this onvention, with the NodeType always as the trailing arg. As it turns out,always having the node objet as the �rst funtion argument �ts in more onsistently in the overall API, and iwant the template parameters to be in the same order as the funtion arguments.s11nlite was primarily developed to simplify this type of detail, but also to provide a link to the i/o layer, asthe ore is blissfully unaware of the pains of i/o.18.2 lient_api<NodeType>As of s11n 1.1.0, s11nlite is based upon a lass alled lient_api<>. This was done primarily beause experieneshowed that s11nlite was not extendable by lients without literally haking in their desired features. A shortbakground story, to put this into ontext:As an experiment, in late 2004 i haked together a opy of s11nlite whih used the network layer of the P::Classesprojet (http://plasses.om). This allowed saving over ftp, for example. The problem was, lients wishingto use it had to know spei�ally about it (alled ps11n), and write to its API, whih was the exat same ass11nlite's exept for the namespae. The end result was two usage-ompatible, data-ompatible, but ompletelyindependent libraries.Fatoring out the main s11nlite funtionality into a sublassable type provides a solution whih allows alls11nlite lient ode to stay inter-ompatible, even when they eah use ustomized bak-ends (i.e., their ownlient_api<> sublass, or one provided by a 3rd party library).Muh of the s11nlite API internally uses an instane of lient_api<>, whih an be fethed or set via thefollowing funtions from the s11nlite namespae 76

lient_interfae & instane();void instane(lient_interfae * newinstane);(lient_interfae is a typedef for lient_api<s11nlite::node_type>.)See the API dos for the onventions and rules, in partiular the ownership rules for the setter.This feature allows lients to use the s11nlite API as a front-end for ustomized extensions to s11nlite. Withoutthis support, extending s11nlite while maintaining ross-lient API ompatibility at the same time is essentiallyimpossible.The end result is: by extending lient_api<>, lients an write ustom s11nlite-like APIs, or s11nlite-ompatible extensions, with very little e�ort. With a bit of additional e�ort a lient an even support multiplebak-ends at one, though i honestly an't think of a useful ase for this.18.3 File formatsThe lite library likes to hide the detail of �le formats from you, but does allow you to speify your preferredformat:s11nlite::serializer_lass(�ClassNameOfSerializer�);This preferene stays in e�et until set again. Unlike version 1.0, in 1.1+ it is not persistant aross appliationsessions beause it was simply too annoying to have eah app overwrite the default of every other app.We an reate a Serializer of a given lass with:s11nlite::serializer_interfae * ser = s11nlite::reate_serializer(�ClassName�);This will return 0 on error, and does not set the library-wide preferene.The lassname passed to these funtions must be a string assoiated with a Serializer lass, either built-in ordynamially loadable (if plugins support is enabled in your s11n). Most Serializers are registered under threenames: their formal name, a onveniene name, and their �magi ookie�. For example, the following alls allhave the same e�et:s11nlite::serializer_lass(�s11n::io::funtxt_serializer�); // formal names11nlite::serializer_lass(�funtxt�); // onveniene names11nlite::serializer_lass(�#SerialTree 1�); // magi ookieIt is not reommended to use the ookies diretly in lient ode. The formal names are more preferred, butonveniene names are there for a reason - onveniene (espeially for use when passing the lass names asommand-line arguments). By onvention, the onveniene name is always the lass name of the Serializer,stripped of namespae and the _serializer su�x (if any).It is up to eah Serializer to initially register any names under whih it is available. Registering the ookie isrequired for dynami �le dispathing to work, but the other names are onventionally registered as well (mainlyfor potential lient-side use).18.4 Simple on�g �less11n 1.1.3 adds the s11nlite::simple_onfig lass. It simply ats as a wrapper for a single s11n node, loadingit upon onstrution and saving it upon destrution. Here is how to use it:#inlude <s11n.net/s11n/simple_onfig.hpp>...s11nlite::simple_onfig onfig(�MyApp-1.0�);using std::string;typedef s11nlite::simple_onfig::node_traits TR;string somestring = TR::get(onfig.node(), string(�somekey�), string());s11nlite::serialize_subnode<MyType>(onfig.node(), mySerializableObjet);77

The tor will attempt to load the �le $HOME/.MyApp-1.0.s11n. If $HOME annot be resolved (via a all to::getenv()) then the tor will throw a std::runtime_error. If the internal all to s11nlite::load_node(...)fails then we heerfully assume the �le didn't exist and reate a new one. The �le will be saved when onfiggoes out of sope. If the �le annot be saved, too bad - there is no way to signal this without having the dtorthrow (whih is generally a bad idea in C++).The member funtion node() return an s11nlite::node_type referene, and any serializable data may be putinto it or fethed from it.18.5 miro_api<SerializableType>This lass is one of those, �i'm bored, let's try this out,� kind of things. its main intention is to save a small bitof typing (pun unavoidable) when loading or saving the same basi type of Serializable over and over again (asi often do in test ode). Here's an example of how to use it:#inlude <s11n.net/s11n/miro_api.hpp>...typedef s11nlite::miro_api<MyType> miro;miro.save(myobj, �myfile�);...MyType * m = miro.load(�myfile�);It uses s11nlite to do most of the work, so it inherits options like the default �le format. To make the lass atad more useful, it also two other minor features. First, eah an use its own �le format, set in the tor or viamiro.serializer_lass(lassname). Seondly, it has simple bu�ering support:miro.buffer(myobj); // same as save(), but is stored in an internal bufferstd::istringstream is(miro.buffer());MyType * m = miro.load(is);miro.lear_buffer(); // one it's not needed any more19 Memory management and objet relationships"Any day now, any day now, I shall be released."Bob DylanMemory management is an important topi for users of s11n. This hapter will try to go into muh more detailthan i'd really are to about the whens, hows, whys, et., of memory management in s11n. This setion issomewhat related to setion 16, exept that that setion overs memory management in the fae of exeptions,as opposed to �normal use.�19.1 Data nodesData nodes, by onvention, are responsible for their own memory management. This means that they own theresoures used to store their properties and they own their hildren. How they do that is unde�ned, but thatthey do it is a given.For most purposes, data nodes do not need any speial memory management. The notable exeption is whenreating an unparented node on the heap (using new or node_traits::reate()). In this ase it is often desirableto use a std::auto_ptr to hold the pointer until you have a plae to reparent it, as in this example:typedef s11n::node_traits<NodeType> NTR;std::auto_ptr<NodeType> n(NTR::reate(�fred�));... perform some operation whih might fail on suess, do: ...NTR::hildren(parentnode).push_bak(n.release()); // pass ownership to parentnode78

19.2 Containers of pointersLet's onsider this simple ase:typedef std::list<int *> IList;IList * il = s11nlite::load_serializable<IList>(�file1.s11n�);That looks all innoent, but there are some potential pitfalls here. The �rst, most obvious, is that the allerneeds to not only delete il, but also the pointers ontained in il. The library has some utility funtions fordoing this:s11n::free_list_entries(*il);delete il; // it's now emptyThat seems simple enough, but let's look at a subtely more omplex ase:typedef std::list<IList *> IListList;IListList * ill = s11nlite::load_serializable<IListList>(�file2.s11n�);...s11n::free_list_entries(*ill); // deletes all pointersdelete ill;The major error here is, we've leaked the ontents of eah and every sub-list. We properly deleted the alloatedsub-lists, but not their ontained parts. A lassi memory leak.This is the main problem with ontainer of pointers vis-a-vis deserialization, espeially when exeptions arethrown during deserialization. Consider:typedef std::list<MyType *> MyList;During deserialization, maybe the fourth entry in the list fails to deserialize. What do we do here?Even if deserialization sueeds, someone has to delete those pointers someday. Presumably, this is alreadyaounted for in your appliation, so the only �danger zone� for these pointers is between the time they areinstantiated and the time s11n gives them bak to your appliation. In that �danger zone�, a misplaed exeptionould potentially lead to a memory leak.As of version 1.1.3, the internal exeptions handling was gutted and rewritten to aomodate this type ofsituation. A �leanup funtor� is now assoiated with eah Serializable type (setion 6.2.1) to take are ofdealloating objets when a deserialization operation fails. The funtor is designed suh that speializations areput in plae to reusively walk any ontained sub-parts, so that we an properly lean up even the followingtype without speial lient-side ation:list< multimap< int, map< string, vetor < int *> > > >Clients needing to lean up pointers suh a type an do the following:s11n::leanup_serializable(myListOfMultiMapOfIntToMapOfStringToVetorOfPointerToInt);Be aware that this is not a general-purpose lean-up mehanism: is only works properly if all types involvedare registered Serializers with proper leanup funtors installed.When deserializing non-standard ontainers, you may need to install your own leanup funtors to be sure thatentries an be walked and leaned up if needed.Some have suggested using smart pointers to elimintate this type of problem, but i don't feel good aboutimposing a spei� smart pointer implementation on s11n lients. It is something to onsider, nonetheless.
79

19.3 Cleaning up before deserializationWhile the ore library will never diretly do this, it is possible, even sometimes desirable, to do via lient-sideode: MyType myobj;deserialize(mynode, myobj);... use myobj ...deserialize(anothernode, myobj); // obtain a new state in old objetThere is nothing fundamentally wrong with this - it is oneptually idential to a opy/assigment onstrutor- but there is one immediate impliation for authors of deserialization operators: the operators should behavelike opy and assignment operators.Put simply, deserialization algos must be sure to free up any resoures whih the deserializing objet owns whenthey take on a new state as a result of deserialization. A ommon example would be a type whih maintains alist of hildren or values. A simple demonstration of the opy/assignment metaphor:T t1;... populate t1 ...T t2;... populate/use t2 ...t2 = t1;Assuming �owning opy semantis�, at the assignment t2 would free up any hildren it urrently owns then opythose from t1. The same applies to deserialization, whih is logially similar to a opy/assignment onstrutor.19.4 Cleaning up after failed deserialization19.4.1 Understanding the problemIt would be nie if we ould add text similar to the following in the API dos for every deserialization algorithm:If this funtion fails, the target deserializable is not modi�ed and any alloated resoures are de-stroyed.The problem is, we an't. After going through the ode very arefully, trying to �gure out where to try, whereto ath, and what to lean up after doing so, it beame lear that s11n's arhiteture blinds it in this regard.Consider this simple all:typedef std::list<T *> TList;TList list;deserialize<NodeType,T>(mynode, list);If that fails, we might expet the list deserialization algorithm to be able to lean up any pointers it alloates.This is a reasonable wish, but it annot be ful�lled. If you read setion 19.2, you probably see why, but let'sexpand on it for a moment:typedef std::list<TList *> TListList;TListList * tll = deserialize<NodeType,TListList>(mynode);Let's say we have a serialized TListList ontaining 3 TList pointers. Deserialization of the �rst two works,so tll.size() == 2. We get to the third one and it throws for some reason. The list deserialization algo anath that... but then what? The natural reation would be to lean up the whole list of alloated objets.However, if we do that, we end up deleting the TList pointers, but not the (T*) they ontain.The ath is, deserialization of the TList and TListList types both go through the exat same algorithm, andthe algorithm has no way of diretly knowing what it is deserializing - it simply passes the requests to the s11nore, whih will route them through the algorithms registered for the given types.80

This doesn't just a�et ontainer types, but any types whih hold unmanaged pointers to memory alloatedduring deserialization. Only the algorithms whih work �self-ontained�, without passing any alls on to otheralgos or the ore, have any hane at all of knowing what they need to lean up on error. Container-relateddeserialization algorithms must, by their very nature, pass on alls to other algorithms, and therefor annotnormally be self-ontained.The end e�et is, they annot know if they've just failed to deserialized a (T*), list<T*>, or map<int,Foo<multimap<double,T*>> >,and therefor dealloating an never be done safely from that level of the API. Unfortunate, but seemingly un-avoidable. The burden of leaning up on failure then shifts to ode whih knows about the overall struture ofthe data (i.e., the lient). Or does it ... ?19.4.2 Aomodating the problem, approah 1 (don't do this!)To extend the above example, let's show where this leanup needs to be done. In short, the only plae whih itan be reliably done is from some point whih has enough information to know the underlying struture of thedeserialized objet. In our ase, that means a point at whih we know about TListList. Given that, we mightdo something like the following in our deserialization operator:try {... deserialize our TListList ...} ath(...) {for eah myTList in myTListList {// free the (T*) in eah list}throw;}19.4.3 Aomodating the problem, approah 2 (do this instead!)Here is a muh more general way of managing this problem, at least within the ontext of Serializables:try {... deserialize our TListList ...} ath(...) {s11n::leanup_serializable(myTListList);throw;}Now we don't are if myTListList is a pointer or referene. We also don't are if it's a ontainer or an integeror a FooManChoo. As long as the type meets the requirements for the s11n's leanup funtor mehanism, thenthis will work. The majority of Serializable types need no speial support or have that support built in totheir registration proess. In this spei� ase, leanup_serializable() will empty out myTListList and allsublists, regardless of how many lists or how deeply they are nested, dealloating any pointers in the lists as itgoes. See setion 6.2.1 for more details.19.5 Understanding �serialization ownership�s11n was originally designed to enable the serialization of hierarhies of objets. As in any OO design, therelationships of resoure ownership are important to onretely de�ne, suh that users of the library and thelibrary itself know when eah one is in ontrol of a resoures (normally this means, �who's going to delete it?�).While s11n's ideas of ownership normally math up niely to hierarhies of lient-de�ned types, there are aseswhere users will need to give some thought to questions like:
• For shared resoures, who is responsible for de/serializing them?81

• How do we de/serialize relationships with shared resoures in suh as way as to not de/serialize the sharedresoures multiple times in one transation?The general topi of �who is responsible for de/serializing eah part� is alled �serialization ownership.� It isnot fundamentally di�erent from normal resoure ownership but users must ensure that their de/serializationalgorithms' ideas of ownership jive with their internal ownership models, or Grief may show its ugly head. Thisan range from dupliating objets, leaking some of them, trying to use not-yet-deserialized objets, and so on.So pay attention...19.5.1 The basi ase: objets own their own resouresIn many basi OO ases, ownership of a resoure belongs to the objet whih ontains it. For example:lass Foo {SomeT * m_t;publi:Foo() : m_t(new SomeT) {}...};It is fairly obvious that eah Foo instane owns its own opy of SomeT. If we want to de/serialize that member,we have no ownership-related questions, beause eah Foo owns his own SomeT. Thus our deserialize operatormight look something like this:delete this->m_t; // free up the old onethis->m_t = new SomeT; // reate a new one to deser tos11n::deserialize_subnode<NodeType,SomeT>(srnode, �somet�, *this->m_t);Or ut out the delete/new and hope that SomeT implements areful leanup when we re-deserialize it.We ould also polymorphially deserialize m_t if we need to, by replaing the bottom two lines of that odewith: onst NodeType * h = s11n::find_hild_by_name(srnode, �somet�);this->m_t = s11n::deserialize<NodeType,SomeT>(*h);The point is, though, that we own m_t and an (should) thus make sure it's lean before deserializing. In thisase, our �serialization ownership� is exatly in line with our objet's ownership of m_t, so we don't have anyspeial onerns here.19.5.2 Serializing pointers to data we don't ownLet's say we have a lass with this private member:list<onst SomeT *> m_list;Remember that we annot diretly deserialize ontainers of onst objets, as we an't hange (deserialize) theirstates, so that is our �rst problem. The seond problem is, in this ase, this objet does not own the listedobjets, but we still need to serialize our assoiation with them.This is a trikier ase that simple in-objet ownership. It an be satsifatorily solved, but neessarily requiressome lient-side help. Let's outline how we might go about making that list persistant.In the absolute simplest ase, we an deserialize to a list<SomeT*> (non-onst) and then transfer the pointersto wherever we need to immediately afterwards, diretly as part of our overall deserialize algo.In a more omplex ase, we might need to store a entral registry of objets and our relationships to them. Hereis one potential way to do that...First o�, we will make some assumptions: 82

• We have a entral registry/pool of pointers to shared objets. Our list ontains pointers to those objets.
• The registry assoiates a unique key with eah objet and provides an API for searhing by key or objetpointer.Certain lients may not need these features, and some may need more. We will start with these, however, todemonstrate a fairly straightforward way of serializing �links� to �external� objets.When saving our appliation's state, we will presumably save the shared objet pool at the same time. This isfairly trivial to ahieve in many ases. Let's assume that our our registry internally uses a std::map<ObjetKeyType,ObjetType*>,or similar, to store the pool, and that all ontained types are Serializable. In that ase, we an simply use built-ins11n support to do what we need:#inlude <s11n.net/s11n/proxy/pod/int.hpp> // assume ObjetKeyType == int#inlude <s11n.net/s11n/proxy/std/map.hpp> // default map proxy#inlude �ObjetType_s11n.hpp� // hypothetial s11n registrationtypedef map<ObjetKeyType,ObjetType*> RegistryMap;RegistryMap map;... populate map ...s11n::serialize(targetnode, objet_map);Not too di�ult.Now, deserialization of the map inherently keeps our keys assoiated with the objets, suh that deserializationof our downstream objets an �nd the objets by key (whih they serialized) later on.When we serialize our member list, the work is fairly simple (ahtung: pseudoode):typedef std::list<ObjetKeyType> KeyList; // string/ulong/et are likelyKeyList klist;for eah item in m_list {klist.push_bak(Registry::get_key(item));}s11n::list::serialize_streamable_list(destnode, klist);Or something along those lines. The idea is, we have a way of looking up some unique key assoiated with eahobjet, and we simply store a list of those keys.For deserialization, it's just the opposite, exept that now we an populate that list<T onst *>:this->m_list.lear(); // important to avoid potential extra entries!KeyList klist;s11n::list::deserialize_streamable_list(srnode, klist);for eah item in klist {this->m_list.push_bak(Registry::get_objet(item)); // may be (T onst *)}It is not always that simple, however, as some objets may not be suitable for this type of lookup, or this typeof lookup may not exist in your framework, or might be non-trivial (or non-value-adding) to add. In any ase,the problem of handling �links� to external data, or de/serialize onst data, an often be handled by breakingdown the de/serialization into multiple parts. Remember that algorithms an be hidden behind others, so thisneed not a�et the way lients serialize your types, but may a�et the internal implementations of the de/seralgos.

83

19.5.3 Two-way parent/hild relationshipsA fairly ommon ase for whih the above is not a suitable solution is where parent and hild objets have anexpliit two-way relationship. One ommon problem here is ommuniating the parent pointer to a new hildduring deserialization. This is normally not as problemati as it may initially seem, however, in partiular ifthe parent owns the hildren pointers. In this ase, hildren do not serialize the link to their parent. Instead,the parent serializes the list of hildren as normal. During deserialization, the parent does the following:deserialize list of hildren;for eah hild in list {hild->set_parent(this);}This of ourse assumes that the hild does not need the parent in order to fully deserialize.Doing this sort of post-deserialization proessing is not at all out of line in using s11n. In many ases it isdesirable to manipulate an objet diretly after deserializing data, in partiular when it omes to establishingrelationships with objets whih were not part of the deserialization operation. For example, while we annotserialize a network onnetion, we an serialize the onnetion parameters, and deserialization ould re-establisha onnetion based on those parameters.20 Using pluginss11n has rudimentary support for so-alled plugins, whih basially means it an load new types at runtime.The primary reason this feature is to allow us to deserialize types whih we don't know about at the time aninput stream is read. This means that the simple at of deserialization may inlude arbitrary new types into anappliation.As it turns out, the approah used for loading Serializable types dynamially is the same used as loading almostany other type dynamially. This means that the s11n plugins support inherently supports a wide range of usesunrelated to deserialization. This setions is about �nding out how to make use of them.The plugins layer is an optional feature, not part of the ore library. The ore makes use of the plugins layer ifit is there, but an also work without it (but without the ability to load lasses from DLLs). The i/o layer analso make use of the plugins module to load new �le handlers on demand.20.1 Building plugins supportIf you are using the supplied build tree, the plugins module is automatially enabled if the on�gure sript �nds aDLL loader it an use. On Unix platforms this would be either libltdl (preferred) or libdl (the de fato Unixstandard). On Windows, LoadModule() is used. If there are problems building it, you an disable it by passing--without-plugins to the on�gure sript. See the header �les s11n_onfig.hpp and plugin_onfig.hppfor the maros related to on�guring plugin support (those �les are both generated by the Unix-side on�gureproess, and may need to be hand-edited on Win32 systems).20.2 Win32 AhtungThe plugins ode fundamentally works under Windows, but its usefulness is signi�antly more limited thanunder Unix platforms beause of Win32's requirement that we expliitely export symbols whih we want tobe published from a DLL. This means that any types whih want to partiipate in the plugins model must beexported using the appropriate API. See export.hpp for the s11n-related maros for this.The s11n library does not urrently (1.1.2) work as a DLL under Windows beause of this requirement to exporteverything.A related thing to keep in mind is that the lassloader model requires that projets building under MS VisualStudio (or similar) will need to turn on the �keep unreferened ode� option in their DLLs, or fatory registrationswithin the DLLs will never happen (meaning the plugins layer won't do anything useful).84

20.3 The APIThe whole plugin layer is omprised of only one lass and 4 free funtions in the s11n::plugin namespae:lass path_finder;path_finder & path();string find(onst string & name);string open(onst string & name);string dll_error();The API provide no support for examining the innards of a DLL, only for �nding and opening them. This isbeause the layer is spei�ally intended to support lassloaders of the type used by the s11n ore. Under thatmodel, DLLs publish no spei� symbols and we do not keep a handle to them.Opened DLLs are never losed by s11n, as doing so is fundamentally dangerous. When your s11n-using appli-ation loses, the OS will free up any DLLs the appliation opened. This is the only 100% reliable way to dealwith opening arbitrary DLLs, beause the plugin layer annot reliably know (nobody an) whih DLL-providedresoures are in use when it loses a DLL. (If you're interested in losing a long debate, send me an email arguingthat it is possible, in the generi ase, to know when it is safe to lose a DLL.)To �nd out if your libs11n has plugins support enabled, you an use one of the supplied on�guration maros:#inlude <s11n.net/s11n/s11n_onfig.hpp>#if s11n_CONFIG_ENABLE_PLUGINS# ... do plugin-enabled ode ...#else# ... non-plugin ode ...#endif20.4 Basi UsageIn fat, there is only �basi usage�, not �advaned usage.�Most lients will not need to aess the plugin layer diretly, but if they wish to, it is intended to be usedsomething like this:#inlude <s11n.net/s11n/plugin/plugin.hpp>...using namespae s11n::plugin;using namespae std;string where = open(�my_dll�);if(where.empty()) {err < < �not found or error: � < < dll_error() < < err;} else {out < < �Found and opened DLL: � < < where < < err;}If open() returns an empty string, one of two things have happened:1. No suh �le was found in the searh path.2. The �le was found but opening the DLL failed. This normally happens beause of inompatible libraryversions, due to missing dependenies or symbols, or the �le is not a DLL at all.85

In either ase, dll_error() should return a desriptive string explaining the problem (it returns the lib[lt℄dlerror string, if possible). The value returned by dll_error() is only valid for one all. Per long-standinglibdl onventions, the internal plaeholder for the error message is leared after this funtion is alled, suhthat it is guaranteed to return an empty string if open() sueeds or if dll_error() is alled twie withoutan intervening all to open(). On Win32 platforms dll_error() returns a string ontaining the error odereturned by LoadModule().The searh path onsists of both diretories and �le su�xes, whih may be manipulated like so:path().add_path(�/home/me/lib/mylib/plugins�);path().add_extension(�.so�);Note that there is nothing about the path_finder lass whih restrits it to being used to �nd only DLLs.Historially speaking, path_finder has often been used as a �nder for images, DLLs, and XML �les. Forexample:path_finder p;p.add_path(�/home/me/.myapp�);p.add_extension(�.xml:.onfig:.s11n�);string onfigfile = p.find(�main�);That will return a non-empty string if it �nds and of main.xml, main.onfig, or main.s11n, in that order, inthe searh path.Contrariwise, the free funtions in the s11n::plugin namespae are restrited to DLL-related paths and �leextensions, by onvention.A default set of library searh paths is de�ned at build-time. Likewise, the �le extension for DLLs is set atbuild-time and depends on your platform. For Win32 it is �.dll� and on Unix platforms it is urrently hard-oded to �.so�, whih is not orret for some Unix-like platforms (e.g., Darwin uses �.dynlib�). These settingsare de�ned in plugin_onfig.hpp, and an be modi�ed at runtime using the objet returned by path().21 s11n-related utilities�I get by with a little help from my friends.�The BeatlesThis setion list the utility sripts/appliations whih ome with s11n, plus some tools whih are known to beuseful with s11n but are not shipped with it.21.1 s11nonvertAhtung: the DLL-loading features of s11nonvert 1.0 are not yet ported to 1.2.Soures: sr/lient/s11nonvert/main.ppInstalled as PREFIX/bin/s11nonverts11nonvert is a ommand-line tool to onvert data �les between the various formats s11n supports.Run it with -? or --help to see the full help.Sample usages:Re-serialize input�le.s11n (regardless of format) using the �parens� serializer:s11nonvert -f inputfile.s11n -s parens > outfile.s11nConvert stdin to the �ompat� format and save it to out�le, ompressing it with bzip2 ompression:at infile | s11nonvert -s ompat -o outfile -bzNote that zlib/bzip2 input/output ompression are supported for �les, but not when reading/writing from/tostandard input/output42. You may, of ourse, use ompatible 3rd-party tools, suh as gzip and bzip2, tode/ompress your s11n data. Also note that ompression is only supported if s11n is built with the optionalzfstream supplemental library and that library supports the desired ompression tehnique.42Sorry, we don't have an in-memory de/ompressing streambu�er.86

21.2 s11nbrowsers11nbrowser is a Qt-based GUI appliation for reading arbitrary data saved with s11nlite. It is not shipped aspart of s11n, but is distributed as a separate appliation, available from:http://s11n.net/s11nbrowser/22 Misellaneous features and triks�It slies! It dies! It uts through a tin an as easily as it uts through a tomato!�Advertisement for Ginsu(tm) knivess11n has a number of features whih may be useful in spei� ases. While some of them require support odefrom �outside the s11nlite sandbox�, a few of them are touhed on here.22.1 Saving non-SerializablesLet's say we've got a small main() routine with no support lasses, but whih uses some lists or maps whihwe would like to make persistant. No problem - simply use the various free funtions available for saving suhtypes (e.g. setion 10.4). This an be used, e.g. as a poor-man's on�g �le:typedef std::map<std::string,std::string> ConfigMap;ConfigMap theConfig;... populate it ...// save it:s11nlite::node_type node;s11n::map::serialize_streamable_map(node, theConfig);s11nlite::save_node(node, �my.onfig�); // also has an ostream overload...// load it:s11nlite::node_type * node = s11nlite::load_node(�my.onfig�); // or istream overloadif (! node) { ... error ... }s11n::map::deserialize_streamable_map(*node, theConfig);delete(node);// theConfig is now populatedAlternately, simply use s11nlite::node_type as a primitive on�g objet or the s11nlite::simple_onfigtype.If the Con�g objet is a Serializable objet (or a proxied one) it beomes even simpler: simply use thesave/load() or de/serialize() funtions diretly on the objet. For example, to proxy the above map,we ould simply insert the following ode before we attempt to de/serialize the map:#inlude <s11n.net/s11n/proxy/std/map.hpp>#inlude <s11n.net/s11n/proxy/pod/string.hpp> // map's ontained types must be serializable,tooIn that ase, we ould use the standard de/serialize funtions on the map:s11nlite::save(theConfig, �my.onfig�);...ConfigMap * m = s11nlite::load_serializable<ConfigMap>(�my.onfig�);if(! m) { ... error: file not found or deser failed ... }theConfig = *m;delete m; 87

There are other ways to deserialize the Con�gMap objet, suh as using:s11nlite::node_type * node = s11nlite::load_node(�my.onfig�);if(! node) { ... error ... }s11nlite::deserialize(*node, theConfig);delete node;22.2 Saving appliation-wide state and SingletonsIt is sometimes useful to be able to serialize the state of an appliation though we have no spei� objet whihholds all appliation data. This an be handled by de�ning a simple Serializable whih saves and loads all globaldata via whatever aessors are available for the data. The same approah an be used for Singletons, whihwe would not normally be able to dynamially load via deserialization due to their Singletonness. An exampleof how to set this up:strut myapp_s11n // our �plaeholder� Serializable type{ template <typename NodeT>bool operator()(NodeT & node) onst // Serialize operator{ typedef s11n::node_traits<NodeT> TR;TR::lass_name(node, "myapp_s11n");... use algos to save app's shared state ...return true;}template <typename NodeT>bool operator()(onst NodeT & node) // Deserialize operator{ ... use algos to restore app's shared state ...return true;}};Then register it as a Serializable, whih is simpler than for most proxy ases beause our �proxy� is atually aSerializable implementing the so-alled Default Serializable Interfae:#define S11N_TYPE myapp_s11n#define S11N_TYPE_NAME "myapp_s11n"#inlude <s11n.net/s11n/reg_s11n_traits.hpp>To save appliation state, we simply need:myapp_s11n state;s11nlite::save(state, �somefile.s11n�);To load our app state we an take a ouple of di�erent approahes, but the most straightforward is probably:myapp_s11n * state = s11nlite::load_serializable<myapp_s11n>(�somefile.s11n�);if(! state) { ... error ... }delete(state); // no longer needed - it modified the global state for us.Or, if you want to get fany, perhaps something like:{ // reate a sope to ontain an auto_ptr<> objet...std::auto_ptr<myapp_s11n> ap(88

s11nlite::load_serializable<myapp_s11n>(�somefile.s11n�));if(! ap.get()) { ... load failed ... }}Or, alternately:using namespae s11nlite;std::auto_ptr<s11nlite::node_type> node(load_node(�somefile.s11n�));if(! node.get()) { ... error ... }myapp_s11n state;deserialize(*node, state);22.3 Saving lib state plus arbitrary lient-spei�ed stateExtending the previous example... i reently had a ase whih evolved an interesting trik:My library provides Serializables but no save()/load() funtions, beause lient apps tend to have their owntop-level save/load funtions. The problem i eventually ran into was that i have a wide variety of unrelatedSerializables, and i wanted a ommon way to save them and my lib state. The reason was simply organizational:my lient-side data had dependenies on the lib-side data, and i wanted them to be saved together. This wasn'ta problem, per se, but it lead to a lot of ode dupliating the same work. The solution was to indeed addload()/save() support at the base-most library level, but do it in a way whih allows the lients to bundlearbitrary data with the library data.Assuming we have a funtion, my_lib_data(), whih returns a referene to a library-wide set of data, here'swhat a lib-level save() funtion might look like:template <typename UserDataT>bool save(std::ostream & os, onst UserDataT & ud) {using namespae s11nlite;node_type n;return serialize_subnode(n, "my_lib_data", my_lib_data())&& serialize_subnode(n, "lient_data", ud)&& save(n, os);}And we do the opposite for load():template <typename UserDataT>bool load(std::istream & is, UserDataT & ud) {using namespae s11nlite;std::auto_ptr<node_type> n(load_node(is));return n.get()&& deserialize_subnode(*n, "my_lib_data", my_lib_data())&& deserialize_subnode(*n, "lient_data", ud);}Adding the string-based (�lename/URL) overloads is left as an exerise (tip: they an be implemented in aslittle as two lines eah).
89

22.4 �Casting� Serializables with s11n_ast()Serializable ontainers of �approximately ompatible� types an easily be �ast� to one another, e.g. list<int>an be �ast� to a vetor<int>, or even a list<int> to a vetor<double*>. What exatly onstitutes �ap-proximately ompatible� essentially boils down to this: the two types must have the same or ompatible s11nproxies installed. If the algorithms are written to aomodate it, the pointerness of the ontained types isirrelevant.Assuming we have registered the appropriate types, the following ode will onvert a list to a vetor, as long asthe types ontained in the list an be onverted to the appopriate type:The hard way:s11nlite::node_type n;s11nlite::serialize(n, mylist); // reminder: might fails11nlite::deserialize(n, myvetor); // reminder: might failOr, the slightly-less-di�ult way:s11nlite::node_type n;bool worked = s11nlite::serialize(n, mylist) && s11nlite::deserialize(n, myvetor);Or, the easy way:bool worked = s11nlite::s11n_ast(mylist, myvetor);Done!As of version 1.1.3, myvetor is guaranteed to be unmodi�ed if the ast fails.It is important to remember that only types whih use ompatible de/serialization algorithms may be s11n_ast()to eah other. The reason is simply that the de/serialize operators of eah type are used for the �asting�, andthey need to be able to understand eah other in order to transfer an objet's state.22.5 Cloning SerializablesGeneri loning of any Serializable:SerializableT * obj = s11nlite::lone<SerializableT>(someserializable);As you probably guessed, this performs a lone operation based on serialization. The opy is a polymorphiopy insofar as the de/serialization operations provide polymorphi behaviour. To be ertain that the properlassloader is used, you should expliitely pass the templated type, using the base-most Serializable type of thehierarhy. When loning monomorphs this template typing is not an issue (unless the type may one day beomea polymorph, in whih ase not expliitely speifying the template parameter is potentially bug in waiting).22.6 Half-intrusive proxying and useless friendsThis is all theory: i've never tried it, as i don't like C++'s �friend� feature.It might be tempting to try �half-intrusive� serialization by de�ning an objet whih does the serialization, butwhih has aess your type's private data. C++'s friend feature ould of ourse be used to solve this. Fromthe delaration of MyType, instead of diretly befriending your onrete proxy type, try befriending it vias11n_traits<MyType> with:friend lass s11n::s11n_traits<MyType>::serialize_funtor;This ensures that MyType's ode doesn't hange when his friends do. Sneaky, maybe, but seems reasonable.There is one small �y in the ointment, though: the de/serialize funtor types are, in pratie, always the sametype, but are not guaranteed to be. That means that if we do this:friend lass s11n::s11n_traits<MyType>::deserialize_funtor;Then we are likely to get a warning from the ompiler omplaining that we've befriended the same type twie.Note that it is always useless to befriend funtions in the s11n publi API, like de/serialize(), beause thosefuntions don't atually touh your objets: they only delegate to the types de�ned in s11n_traits<MyType>.90

22.7 zlib & bz2lib supportAs of 1.1, this support omes in the form of an optional add-on library, zfstream, whih s11n will use if thebuild proess �nds it. It an be downloaded from the s11n.net downloads page:http://s11n.net/download/When enabled, s11n reads zlib/bz2-ompressed data �les without having to know that they are ompressed. Inthe interest of data �le portability/reusability, output �le ompression is o� by default. Sine the feature omesfrom an external library, the s11n API provides no diret way for users to enable ompression for output �les.It an be enabled lient-side by doing the following:#inlude <s11n.net/s11n/s11n_onfig.hpp>#if s11n_CONFIG_HAVE_ZFSTREAM#inlude <s11n.net/zfstream/zfstream.hpp>#endif...#if s11n_CONFIG_HAVE_ZFSTREAMzfstream::ompression_poliy(zfstream::GZipCompression);#endifSine s11n::io uses zfstream to reate �le output streams, s11nlite will use the poliy spei�ed by zfstream.All funtions in s11n's API whih deal with input �les transparently handle ompressed input �les if the ompres-sor is supported by the underlying framework, regardless of the poliy set in zfstream::ompression_poliy():see zfstream::get_istream() and get_ostream() if you'd like your lient ode to do the same. Note thatompression is not supported for arbitrary streams, only for �les. Sorry about that - we don't have in-memoryde/ompressor streambu�er implementations, only �le-based ones (if you want to write one, PLEASE DO! :).As a general rule, zlib will ompress most s11n data approximately 60-90%, and bzip often muh better, butbzip takes 50-100% more time than zlib to ompress the same data. The speed di�erene between using zliband no ompression is normally negligible, and loading large gzipped �les an atually be slightly faster thanusing no ompression. Bzip, however, is notiably slower on medium-large data sets.As a �nal tip, you an enable output ompression pre-main(), in ase you don't want to muddle your main()with it, using something like the following in global/namespae-sope ode:stati int bogus_plaeholder = (zfstream::ompression_poliy(zfstream::GZipCompression),0);That simply performs the all when the plaeholder var is initialized (pre-main()).22.8 Using multiple data formats (Serializers)It is possible, and easy, to use multiple Serializers, from within in one appliation. s11nlite likes to hide thisdetail from us, but allows us to set the default Serializer lass and load Serializers by lass name at runtime.Traditionally, loading nodes without knowing whih data format they are in an be onsiderably more workthan working with a known format. Fortunately, s11n handles these gory details for the lient: it loads anappropriate �le handler based on the ontent of a �le. (Tip: lients an easily plug in their own Serializers: sees11n/io/serializers.hpp for the API.)Saving data to a stream neessarily requires that the user speify a format - that is, lient ode must expliitelyselet its desired Serializer. One again, s11nlite abstrats a detail away from the lient: it uses a single Serializerby default, so s11nlite's stream-related funtions do not ask for this.Data an always be onverted between formats programmatialy by using the appropriate Serializer lasses, orby using the s11nonvert tool (setion 21.1).It is not possible, without lots of work on the lient's side, to use multiple data formats in one data �le - alldata �les must be proessable by a single Serializer. Theoretially, it might be easily ahievable if... no, wewon't go there. 91

22.9 Sharing Serializable data via the system lipboardExperiene has shown that holding pointers to objets in the system lipboard an be fatal to an appliation(at least in Qt: if the objet is deleted while the lipboard is looking at it, the lipboard lient an easily step ona dangling pointer and die die die). One perhaps-not-immediately-obvious use for s11n is for storing serializedobjets in the lipboard as text (e.g. XML). Sine nodes an be serialized to any stream it is trivial to onvertthem to strings (via std::ostringstream). Likewise, deserialization an be done from an input string (viastd::istringstream). It is de�nitely not the most e�ient approah to ut/opy/paste, but it has workedvery well for us in the QUB projet for several years now.Additionally, QUB uses XML for drag/drop opying so if the drag goes to a di�erent lient, the lient will havean XML objet to deal with. This allows it, for example, to drop its objets onto a KDE desktop.Assuming you serialize to a ommon data format (i.e., XML), this approah may make your data available toa wide variety of third-party apps via ommon opy/paste operations.The soure ode for the s11nbrowser appliation ontains a lass whih ats as a global lipboard for s11n-abledata.22.10 Containers of onst objetsWhen serializing ontainers of onst objets, we need to do some speial-ase handling during deserialization.To make a very short example, let's assume that our lass ontains a list whih we would like to serialize:typdef std::list<onst MyType *> ListT;That will serialize just �ne, but deserialization will fail at ompile-time beause the deserialization algorithmof MyType is non-onst, and thus may not modify the objet it needs to modify. It is an inherent property ofDeserializables that they may not be onst, just as it is an inherent property of Serializables that they must43be onst.In this ase we need to apply the layer-of-indiretion rule. One straightforward approah is, in our deserializeoperator, to deserialize the list to a temporary ontainer of list<MyType*>, then opy or move the pointersinto your ListT, like so:typedef std::list<MyType *> TempT;TempT tmplist;if(s11n::deserialize(mynode, tmplist)) {... opy/move tmplist's ontents to our member list ...}We must of ourse be areful with the pointer ownership: tmplist owns the pointers initially, and we will needto move that ownership to wherever is appropriate for our appliation.Note that it is theoretially possible to add a simple wrapper whih handles this onst-related handling for aertain lass of ontainer (e.g. lists or maps), suh that we ould do something like:deserialize_list_of_onsts(mynode, mylist);The funtion would need to internally strip out onstness from ListT::value_type, so it would have sometemplate meta-ode, but i believe it ould be done with little e�ort.22.11 Versioning of s11n dataAs disussed (reas as �justi�ed�) at length elsewhere in this doument, i'm not a fan of data versioning. Let'sonsider one way it might be implemented, and whih is fundamentally similar to how the Boost serializationlibrary aomplishes versioning (whih it inludes in its equivalent of s11n_traits):template <typename T>strut version_heker {43Well, �should� be onst. Most serialization libraries do plae onst requirements on serializable types.92

... serialize operator whih uses node_traits::set() to embed a version identi�er deserialize operator whih uses node_traits::get() to hek the version identi�er ...};Now register that type as the proxy for any given Serializable:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�#define S11N_SERIALIZE_FUNCTOR version_heker<MyType>#inlude <s11n.net/s11n/reg_s11n_traits.hpp>As a �nal bit, we speialize version_heker<MyType> and do any type of validation we like. Viola.There is a aveat, however: you may have to use ustom variants of otherwise �standard� s11n proxies/algorithms.e.g., the ontainer proxies would not like you adding another property to the target node, and may beomeangry or onfused (throw or result in orrupted node ontent). To work around this, the version heker ouldatually restruture the serialized data. For example, our serialize operator might embed a new node in thetarget node, storing the version property in the original target and adding the serializable objet to a newsubnode:bool operator()(s11nlite::node_type & tgt, onst SerializableType & sr) onst{ typedef s11nlite::node_traits NTR;NTR::set(tgt, �version�, 42 /* need not be an int */);return s11n::serialize_subnode(tgt, �data�, sr);}Likewise, the deserialize operator would throw if the version identi�er does not math. To avoid dupliationof the identi�er in both de/serialize algorithms, the identi�er might be set as a stati onst member in theversion_heker speialization, or made available via a stati getter funtion.Sine this behaviour e�etively only works monomorphially, the normal all to NTR::lass_name(tgt,�...�)is unneessary beause it is set by the ore.The remaining aveat involves polymorphi version heking: versioning of types with polymorphi/virtualde/serialization operators e�etively requires those types to do any version heking themselves, or expose anAPI whih a proxy an use for doing the heks, as the de/serialize implementations otherwise theoretiallyannot get at the version info of any subtype in the hierarhy.22.12 Splitting up your outputOne of the interesting inherent properties of all Serializables is that they are inherently omposable. That is,Serializables an be de/serialized in isolation or within the ontext of another Serializable. This means thatthere is no partiular reason that we have to lump all of our data into single pakets for purposes of savingthem. Let's assume that we have a lass AType, whih ontains three Serializables, S1, S2, and S3, and thatwe have publi aess to the data. The following two approahes are �just as legal� when it omes to saving anobjet of AType to a �le:using namespae s11nlite;save(myA, �alldata.s11n�);or: save(myA.s1, �part1.s11n�);save(myA.s2, �part2.s11n�);save(myA.s3, �part3.s11n�);This is partiularly suitable when used with the �saving appliation state� approah demonstrated in setion22.2. 93

22.13 Improving ompile timesThis library's biggest inherent weakness is arguably the ompilation-time hit it imposes on lient ode. Herewe will disuss some general guidelines for helping improve ompile times...First inlude only the proxies whih you know you will need. For example, if you're not serializing doubles,don't inlude a proxy for doubles. For eah Serializable we must reate a number of bak-end types whih dothings like API forwarding, lassloading, et., using template speializations. Thus the reation of a proxy isnot trivial for the ompiler.Seondly, try to redue your diret dependenies on s11n.net headers. Some ways you an do this:
• Create your own front-end interfae. With the s11nlite::lient_api lass this is very simple to do. Ifyou know you have a very limited set of types to serialize, for example, all of your lasses sublass a baseSerializable lass, then the native s11n[lite℄ API an be almost ompletely hidden from lient ode behindthe lient-side front-end API. By doing so, we an restrit the s11n-related ompile times to more isolatedparts of our lient soure tree.
• If you are in the habit of storing delarations in MyClass.hpp and implementations in MyClass.pp, thenreonsider splitting the implementation �le into two �les, adding MyClass_s11n.pp (or whatever), andput any parts whih ontain s11n API alls into that �le. That way, when the main implementationhanges, we don't need to reompile the serialization parts.
• Preompilation might sound tempting, but has a sign�ant inherent �aw: any preompiled soure unitsmust be ompiled with the exat same options as any lient ode whih will link to it. If this rule isnot followed then we run the risk of having inonsistent de�nitions of anything whih might have beenonditionally de�ned/implemented based on preproessor maros.22.14 Know when you don't need to register a type to serialize itMembers Only. (Most of the time.)This manual goes on and on about proper registering of types with the framework so it an know how to handlethem. Registrations essentially serve the following purposes:
• Make the lassloader aware of the lass: its name and how to reate an objet. This is neessary forpolymorphi deserialization. Monomorphi an be done without this.
• Tell the ore library whih de/ser algorithm pair will at on behalf of the type. Even in the ase of typeswhih diretly implement a Serializable interfae, s11n internally uses a proxy to route itself to the properlass-level API. (This is for internal uniformity.)As normal in almost all ultures, non-itizens have fewer rights than registered itizens. But they do have somerights. Let's take a look at what they an do...22.14.1 Containers of Streamable typesThe following ode will work as expeted without any registrations of any of the involved types:typedef std::map<int,std::string> Map;Map m;... populate it ...s11nlite::node_type node;s11n::map::serialize_streamable_map(node, m);Map demap;s11n::map::deserialize_streamable_map(node, demap);The same goes for s11n::list::[de℄serialize_streamable_list().From there we an use s11nlite::save() to send the node to a �le, or s11nlite::load_node() to load itfrom a �le.The reason this works without registration is beause the �streamable� algorithsm don't need, and don't use,any of the main features provided by the registration proess: dynami loading and mapping of de/serializationalgorithms. 94

22.14.2 Algos whih don't need the s11n ore APIAs a general rule, if we have a type whih an be de/serialized without using features of the s11n ore API, andwithout dynami loading, we an get away without registration. We an do dynami loading without the ore,but that is an important feature of the library, and there is little reason to want to go around it. By �featuresof the ore,� we basially mean any s11n[lite℄ API whih requires a SerializableType template argument. Theshort reason for this is that alling the ore library will fore us to go through registered proxies (or the defaultproxy, whih won't work in most ases).In general, the non-registration ases normally exlude any types whih have data nested more than one leveldeep unless we arefully hand-raft out de/ser algorithms to avoid the ore API. While it is normally ounter-produtive to do so, some ases might all for doing this.A onrete example will help to larify...�Streamable� ontainers, as demonstrated above, work beause they expliitely require that all involved typesbe i/ostreamable. This limitation allows the algos to rely on i/ostream operations, rather than the ore, tode/serialize eah objet. Non-streamable ontainers, however, require registrations for their ontained types.Let's look at why this is so, assuming the exat same map type from the previous setion:s11n::map::serialize_map(node, m);There is a fundamental di�erene between serialize_map() and serialize_streamable_map(): the formerhas no idea how to handle the ontained types, so it sends them bak through s11n::serialize(). This, in turn,will attempt to look up the proper handler for the ontained type, as de�ned in s11n_traits<ContainedType>::serialize_funtor.Note that if our map's type is registered as using the default map proxy, this does the same thing as above,eventually routing through serialize_map():s11n::serialize(node, m);23 Misellaneous aveats, gothas, and some things worth knowing�Don't ross the streams. That would be bad.�Egon, Ghostbusters23.1 Serializing lass templatesPlease see the examples on the s11n web site and in the soure tree under sr/lient/sample/, whih oversthis whole proess in detail. Fundamentally it is not di�erent from handling any other lass, but there are somespeial onsiderations whih have to be aounted for when registering them.23.2 Cyles and graphsWhile i have never seen it happen, it is possible that a yli de/serializing objet will ause an endless loopin the ore, whih will almost ertainly lead to muh Grief and Agony on someone's part (probably yours!).Suh a problem is almost ertainly indiative of mis-understood or inorret objet ownership in the lient ode.Consider: presumably only an objet's owner should serialize that objet, and hild objets should generallynever have more that one parent or owner.Data Node-based de/serialization (as opposed to Serializable-based) never inherently in�nitely loops beauseData Node trees simply don't manage the types of relationships whih an lead to yles. In other words, anysuh endless loops must be oming from lient ode, or possibly from lient-manipulated Data Node trees.At least one algorithm has been implemented on top of s11n to serializer ontainers of a graph of lient-sideobjets, but that partiular one was proof-of-onept and it an be implemented muh better that i have. Thepoint being, it an be done, but the library urrent ships with no algorithms to do this. If you write one, oreven a good, generi desription of how to implement one, please submit it!
95

23.3 Thread SafetyTo be perfetly orret, there are no guarantees. i have no pratial experiene oding in MT environments,and thus it would be a blatant lie if i made any sort of guaranty in this area. But i will tell you what i thinkare the fats...The s11n ode �should� be �fairly� thread-safe, with some notable aveats:First o�, no two threads should ever use the same Serializer instane at the same time: eah instane must beused by at most one thread at a time. Violation of that rule is a blanket no-no.The following Serializers are believed to be 100% thread-unsafe (or un-thread-safe, if you prefer) in all regards:
• ompat_serializer (reimplementing this one would be quite trivial, but the last thing i wanna do isreimplement yet another damned parser)
• simplexml_serializer
• expat_serializerThe Serializers parens, funtxt, and funxml have been extensively reworked to use instane-spei� internalparsing bu�ers, as opposed to global data, and are believed to be safe in the sense that you may use N instaneson N streams from N threads at one. (Let me stress: that is theory.)The guilty ode is probably almost all in the �exers, though some of the shared objets (e.g. lassloaders) ouldoneivably be a�eted. It is believed that the lassloader/fatory parts, while not spei�ally thread-safe, areunlikely to be a�eted by most issues of threadedness. That is, who ares if two threads do a lookup in thelassloader at one? The only time this might be a problem is when the optional plugin layer is used, beausethat layer is akin to dlopen()/dlerror(), and it is possible that the error string from one thread is read byanother.23.4 Polymorphi types and template parameters�We've been thinking all these years that Objets and Polymorphism were the solutions to ourproblems!�Anonymous Software DeveloperLet's assume we have the following hierarhy of Serializables:T1 <== [extended by℄ <== T2 <== T3The s11n registration proess requires that we register T2 and T3 as subtypes of T1. This is (urrently)neessary for proper lookups of the various traited information, like the proper de/serialization algorithms touse on the type.Now onsider this lient-side ode:using namespae s11nlite;T1 * t1 = new T1;save(*t1, std::out); // finedelete t1;t1 = new T3;save(*t1, std::out); // fineT2 * t2 = new T2;save(*t2, std::out); // ooops!The problem with that is that save() is going to end up seeing a type of T2, not T1. The end e�et is thats11n's ore looks to s11n_traits<T2> to �nd out the info it needs, and it may very well not �nd it. Even ifit does, our troubles aren't over: the fatory layer probably hasn't got a fatory<T2> entry, beause T2 wasregistered as a T1 subtype and thus exists in the fatory<T1>. That means save() would work, but loadingwould not beause we ouldn't instantiate a new T2 objet.The solution is to template-qualify the all to save():save<T1>(*t2, std::out); // fineIn pratie, this is more of a problem for deserialize/load operations than serialization.96

23.5 Absolute No-no's (Worst Praties) for s11n[lite℄ lient ode"A muddle of on�iting opinions united by fore of propaganda is the worst possible soure ofontrol for a powerful tehnology."Alan W. Watts, The Book�It's not a problem until you make it a problem.�Seth Geko, From Dusk 'Til DawnThis setion, added in version 0.9.17, overs some �no-no's� for the s11n framework. That is, things whih areoften easy to do but should not be done. They are here beause, well, beause i've done them more than oneand want to spread the word ;).Please note that the subsetion titles below all start with the words do not and end with an exlamation point!23.5.1 Do not hange the name of a passed-in data node!node_traits<>::name(string) is used to set the name of a node. This name is used by Serializers to, e.g.name XML nodes:<nodename s11n_lass=�MyClassName�>...</nodename>As a blanket rule:No ode must ever hange the name of a node whih is passed to it. Code may freelyhange the names of nodes whih it reates.In any ase, when you do hange node names, keep in mind that if you want to support the widest variety ofdata fomats, you should follow the standard node naming onventions overed in setion 5.3.An example of this no-no:bool my_algo(s11nlite::node_type & dest, onst my_type & sr){ typedef s11nlite::node_traits NTR;// NONO: NTR::name(dest,�whatever�);// Never hange the name of a node passed to us.// The following is Perfetly Aeptable:s11nlite::node_type * hild = NTR::reate();NTR::name(*hild, �foo�);// alternately:// hild = NTR::reate(�foo�);NTR::hildren(dest).push_bak(hild);// or reate, name, and reparent in one step:// hild = & s11n::reate_hild(dest, �foo�);}The reason for not hanging the name is essentially this: when building up a tree of nodes, the easiest wayto struture nodes (for s11n's purposes) is normally to name them. When a funtion names a node duringserialization, the mathing deserialization algorithm will rightfully expet to be able to �nd the named node(s).When it annot �nd the named node(s), deserialization will likely fail (this depends on the algorithm and datastruture, but generally this would indiate a failure). To be perfetly lear: this means that serialization islikely to pass by without error (in fat, it's almost guaranteed to), but deserialization will likely fail (again, �itdepends�, but it should fail).
97

23.5.2 Do not use a single Data Node for multiple purposes!See also setion 26.2.Never do something like the following:s11nlite::serialize(mynode, mylist);s11nlite::serialize(mynode, myotherlist);We've just serialized two lists into the same data node (mynode). Unless you spei�ally design algorithms/proxiesto handle this, the results are unde�ned. Some algorithms enfore that you give them empty ontainers, somedo not, and the library itself does not speify one behaviour or the other.Likewise, the following is a related no-no:s11nlite::node_traits::set(mynode, �myproperty�, myval);s11nlite::serialize(mynode, myotherlist);Again, we've used mynode for two omplete di�erent things: storing a property and list ontents. If the propertyis not hosed by the list serialization algorithm then the extra property in the node may very well onfuse thedeserialization algorithm! Again: unde�ned behaviour. What we need to do in this ase is serialize the list intoa subnode:s11nlite::serialize_subnode(mynode, �hild_name�, myotherlist);Mixing data from di�erent serialized objets into the same nodes will quite possibly ause a �logial failure�during deserialization. That is, the de/serialization will work, in and of itself, but the results will not be whatare semantially expeted (but are, indeed, exatly what s11n was told to do). It might work, it might not,depending on a bazillion fators. Don't do it and you won't have to worry about any of these fators.That leads us to a related no-no...23.5.3 Do not re-assign a referene returned by s11n::reate_hild()!Never re-use a referene returned from s11n::reate_hild() as the target of an assignment to anotherreate_hild() all. In other words, don't do this:s11nlite::node_type & n = s11n::reate_hild(mynode, �subnode�);... serialize something to n Let's re-use n for another subnode ...n = s11n::reate_hild(mynode, �othersubnode�); // Doh! Just re-assigned the �subnode� node!That's almost ertainly not what's intended. What we probably meant to do was:s11nlite::node_type * n = & s11n::reate_hild(mynode, �subnode�);... serialize something to n ...n = & s11n::reate_hild(mynode, �othersubnode�); // fine(The hanges are marked in blue.)The design reason that reate_hild() returns a referene is beause it returns a non-onst whih is notowned by the aller (it belongs to the parent node), and i want the interfae to intuitively re�et that the allerdoes not own the returned objet. In general C++ pratie, objet ownership is never transfered to the allerwhen a funtion returns a referene.Another way to reate hildren is like this:std::auto_ptr<s11nlite::node_type> n(s11nlite::node_traits::reate(�subnode�));if(! (some operation whih might fail)) { return 0; }s11nlite::node_traits::hildren(parentnode).push_bak(n.release()); // transfer ownership98

23.5.4 Do not use Serializers to implement lassial i/ostream operator funtionality!It may be temping to implement lassial-style i/ostream operators by using s11n. The ore of s11n is i/oignorant, and using it diretly from within your i/o operators is possible, but potentially tedious. The s11n::ionamespae provides lasses whih use s11n's onventions to provide a streams-based i/o layer. s11nlite providesa binding between the s11n::io layer and the ore layer. It may be tempting to bypass s11nlite and use thes11n::io layer from your i/o operators. That is unlikely to work, largely beause of the work�ow Serializersare designed to follow. Serializers rely on a strit sequene of events whih says, �read/write one top-levelnode from/to this stream, then you're done.� When using Serializers for arbitrary sequenes of i/o operators,the Serializer annot preisely know when a root node begins, and thus get onfused. If i/o operations arefreely mixed in arbitrary order (as they easily ould be when dealing with lient-side i/ostream operators), theSerializers aren't smart enough to deal with it, as it's far outside of their sope.Don't forget: if a type is Streamable (i.e., supports i/ostream operators) then it is inherently Serializable: if itwants to be treated as a full-�edged Serializable, instead of as a POD, a proxy needs to be installed, suh ass11n::streamable_type_serialization_proxy. See the various pod/XXX.hpp proxy-installation headers forexamples of how this is done.23.5.5 Do not register a type as its own proxy!Okay, this is not spei�ally a �do not�, but there are good reasons not to do this. Do what? Do this:#define S11N_TYPE MyType#define S11N_TYPE_NAME �MyType�#define S11N_SERIALIZE_FUNCTOR MyType#inlude <s11n.net/s11n/reg_s11n_traits.hpp>Proxy objets are reated very often - on eah all to a de/serialize operator - then immediately destroyed.Unless your type is extremely heap to reate and opy, do not register that type as its own proxy. The defaultproxies are heap by design, and have no per-instane state.Aside from that, this type of registration essentially just doesn't make sense, and no use ase to date has showna need for it. It's really one of those dreaded aademi/theoretial problems whih is unlikely to ever atuallyshow up. But onsider yourself warned, nonetheless.24 Funtional serialization1.1.3 adds some experimental ode for doing some triks ommon in funtional programming. This is still in itsvery early stages, but i hope to �nd some useful funtional/metatemplate triks for adding new features to thelibrary.While the library generally provides all features whih �most lients� need for serialization, there are times whenthat just isn't enough. While writing ustom algorithms is not di�ult in and of itself, and normally takes nomore e�ort than a few minutes of time to implement a proxy, it would sometimes be nie to have a simple wayto work within the library, but around its default (or registered/proxied) behaviours. Funtional ompositionallows us to do this by building up funtors whih themselves enapsulate one or more serialization operations.24.1 #inlude ...Most of the ode is delared in:#inlude <s11n.net/s11n/funtional.hpp>24.2 Example: serialize via std::for_eah()As an example, let's serialize a map using for_eah() and a funtor whih is applied to eah hild pair of themap. The �more interesting� parts are olored blue. 99

using namespae s11n;typedef std::map<int,std::string> MapT;MapT map;int at = 0;map[at++℄ = "one";map[at++℄ = "two";map[at++℄ = "three";s11nlite::node_type node;Given that, we an use funtors to all the standard API:ser_f(map)(node);That serializes the map using the default serialize funtor (the ore s11n serialize() funtion). Its overloadedtwin takes a funtor argument, so you an speify a ompatible algorithm (whih means just about any s11nserialize algo).As an example, we an use, e.g., a for_eah() loop and speify a funtor for eah hild objet:std::for_eah(map.begin(), map.end(),ser_to_subnode_f(// funtor generatornode, // target node to plae hildren in"hild", // name of eah hild elements11n::map::serialize_streamable_pair_f()// ^^^^^ serialize algo, applied to eah MAP entry));Now deserialize it using a non-onventional approah:MapT unmap; // target map to deserialize totypedef std::pair< MapT::key_type, MapT::mapped_type > NCPair;// ^^^^ kludge: strip the onst part of MapT::value_type.firststd::for_eah(s11nlite::node_traits::hildren(node).begin(),s11nlite::node_traits::hildren(node).end(),deser_to_outiter_f<NCPair>(// funtor generatorstd::inserter(unmap, unmap.begin()), // output iterators11n::map::deserialize_streamable_pair_f()// ^^^^^ deserialize algo, applied to eah NODE hild));Weird, eh? The weirder part is: none of this requires any s11n registrations of the involved types. But it alsodoesn't yet work on pointer-quali�ed types, and registration is urrently neessary for that ase.Blabber: Theoretially, some metatemplate triks an allow s11n to internally distinguish betweenregistered and non-registered types, whih may allow the library to handle statially-known pointer-quali�ed types (e.g., (int*), (std::string*), and (MyType*)) non-polymorphially. In English, thatmeans that means that monomorphs would never stritly need to be registered, whereas urrentlyany non-stak-based alloation requires registration (long story). That's an unproven theory, though.The main problem with not registering is getting a type's name, whih we atually ignore in thenon-dynami-load ase, anyway. 100

The deser_to_outiter_f() funtion returns a funtor whih sends deserialized objets to an arbitrary outputiterator, so it an be used on most ontainers. For ontainers whih support it, this allows deserializing objetto a di�erent order than they are saved in, e.g. by using std::front_inserter(). It also allows deserializingfrom one ontainer type to a fundamentally di�erent type, like map<K,V> to vetor<pair<K,V>>. With theproper binders, we ould deserialize from a map<K,V> to a vetor<V>, or potentially even a vetor<K> andvetor<V> in parallel.Trivia: the �_f� naming onvention was piked up from the Boost.MPL library, and means �funtor.�We've also added �_f� variants of all of the major algorithms, like serialize_f, deserialize_f, serialize_subnode_f,et. These an (mostly) be used diretly as proxies when registering a type, one eah for the de/serialize fun-tors. In the ase of the subnode-based algos, whih take three arguments, you need to use a binder funtor,like serialize_to_subnode_f<>, whih essentially onverts serialize_subnode_f to a binary funtor (butsee also serialize_to_subnode_unary_f).While s11n has had, sine the beginning, the ability to de�ne separate objets as the de/serialize funtors,that feature has gone entirely unused until reent experimentation began with funtional omposition vis-a-vis serialization. If s11n didn't have this feature, all partiipating funtors would have to implement bothde/serialize operators (as we have onventionally done). There are in fat lient-side ases where alling ofsuh funtors is ambiguous, whih is why the split-funtor ability has always been there. Curiously, the ores11n library never has a problem with suh ambiguity, and the reason is beause it's just forwarding stu� alongand the ontext has already properly stritly de�ned the onstness of all involved objets. In lient ode thisambiguity annot always be avoided without another layer of indiretion or asting. The point being, having asingle funtor for eah operator turns out to be very useful after all.24.3 Composing ustom algorithms from funtorsA slight di�erentiation on the above approah, we an ombine various funtors to generate ustom algrithmson the �y, as shown below. Assuming we have the same types and objets as shown in the previous example:// define a funtor to serialize our map:serialize_to_subnode_f<s11n::map::serialize_streamable_map_f>algo("hild");ser_nullary_f(node, map, algo)(); // Serialize it// Define deserialization algorithm:deserialize_from_subnode_f<s11n::map::deserialize_streamable_map_f>dealgo("hild");MapT demap;deser_nullary_f(node, demap, dealgo)(); // Deserialize its11nlite::save(demap, std::out);In th end, demap will have the same ontents as map.Keep in mind that this is a very trivial example, and work in this area started only in September, 2005. Librarieslike Boost.Spirit.Phoenix do some absolutely inredible feats of ompile-time omposition, and i hope to be ableto eventually understand it all well enough to apply it usefully in s11n's API. Funtional omposition allowsus to de�ne our algorithms as inlined expressions, whih has interesting uses. One example is that it allowsus to serialize the same one type using more than one algorithm without multi-registration problems. s11n'sore only allows one registered proxy for eah type, and omposition allows us a way to bypass the default APImarshaling.24.4 Non-default-onstruted proxiesOne of the more interesting features whih algorithm omposition gives us is the ability to use non-default-onstruted proxies. We urrently have the limitation that proxies are opied, not passed by (onst) referene,but this allows at least a minimal amount of at-runtime modi�ation of our proxies.101

25 Understanding the osts of deploying s11n(Why is this setion so far down in the manual, when this info really should be up near the top?Beause it goes into quite a lot of tehnial detail whih will only be fully understood one the s11narhiteture is understood. It's kind of a hiken-egg senario.)Having a generi, widely-useful serialization framework at hand means, for me, saving tens to hundreds of hoursof work on other projet trees. Literally, every time i add s11n support to a projet, after 10 minutes of work ian say, �thank gawd that's over!�But of ourse all lazy programmers end up paying somewhere... and this setion is about the overall deploymentosts of using s11n in lient-side ode. While it may not be onventional for a library to doument this type ofthing, i feel ompelled to tell it like it is, if only to balane out with all the hype i've been spouting about thelibrary up until this point ;).By �osts� we mean things suh as:
• Developer learning time.
• Code refatoring e�ort (if appliable - s11n support an normally be added to lient types post fato).
• Compilation times. This is de�nitely s11n's sorest point, due to its heavy use of templates. Muh workhas gone into utting these down in the 1.1 tree.
• Runtime resoures: RAM and �lesystem spae.To be lear, all software has deployment osts assoiated with it - this is not a detail whih is spei� to s11n!This setion will attempt to address these osts, to give potential users of the library a good idea of what theymight be getting themselves into... hopefully before they get into it. We will not provide many hard numbers,but we will give an overview of where one an expet to inure at least some notable amount of deploymentoverhead.For ompleteness, we really should ompare s11n's osts in at least the following ontexts:
• The ost of ustom-implementing serialization, as opposed to using s11n. It's safe to say that this is nevertrivial when laking some sort of framework-level support.
• Compared to integrating �the average 3rd-party library�. This of ourse varies widely, depending on thenature of the lib-lient dependeny, so a blanket omparison annot be validly made here.
• Compared to the ost of using an equivalent serialization library.That last ontext isn't really fair, beause there urrently is only one suh alternative ;). See http://boost.org,and look for Robert Ramey's serialization library, for the only other C++ serialization framework whih ur-rently o�ers anywhere near the levels of �exibility and features o�ered by s11n. i would guess that Robert'slibrary has similar overall deployment osts as s11n, perhaps even slightly lower, and of ourse has the advan-tage of the massive peer-review system that all Boost libraries go through. i've tried to objetively ompare hislibrary and this one in setion 28.While normally we won't go into spei�s of s11n vis-a-vis other alternatives, if only beause i only use s11n forall of my serialization needs ;), we will attempt to provide an as-objetive-as-possible overview of the generaltypes of deployment osts.As with any software, the ost of deployment is a ost paid almost entirely by the lients of that software (whomay also be the software's developers, as in the ase of �internal� software). i personally feel that s11n has arelatively low ost of deployment, partiularly when ompared to the alternative of hand-oding serializationsupport into a library. That said, i would be extremely interested in hearing your own experienes and opinions(or hard fats!) about s11n's ost of deployment. Suggestions for how to lower any aspet of deployment ostsare always welomed. :)25.1 Learning urveIt would not really be fair for me to omment on this aspet of s11n. As its author, i inherently know how s11nworks and how to use it. But i will of ourse omment on it, otherwise this setion would end immediately afterthis paragraph. 102

It is my belief that experiened oders who start with the sample ode in the s11n soure tree and browsethrough the dos an pik up the library, almost to the point of full pro�eny, within a day or two (maybefaster, for you espeially lever ones out there). It an be understood to the point where one an basially useit in a ouple of hours or less, i would think. (If i am way o� here, please let me know!)My �experiened guestimate� would say that oders who have posted to the s11n mailing list normally seem tofeel omfortable with the arhiteture after writing 2-3 serializable implementations or serialization algorithms.i an't say how physially long that maps to for beginners - an experiened s11ner an rank out suh animplementation in a few minutes in most ases.Please, please, please, if you are just starting out with s11n, start with the s11nlite API ! See setion 2.5 for why.True masterhood of the library an take time, but how muh is unknown and probably unknowable. i will admitthat i do not yet fully omprehend all of the potential uses, abuses, and triks implied by the arhiteture. There'sstill a lot of room for theory in there, and at least as muh room for experimentation. It will be a while befores11n's urrent model is worn out, i think (i hope!). Exploring those aspets is half of the fun of working ons11n.There is a lot of doumentation for the library, but that is not beause it's hard to use. That is, rather, beause:1. As a lient-side software user, i refuse to use undoumented libraries, with a strong preferene towardswell-doumented libraries (e.g. Qt (http://www.trollteh.om) is a great example, as are the librariesavailable from http://boost.org). Being so pedanti on this point, i annot expet users of my softwareto give it a seond glane if it's not doumented, and not to give it a third glane if simple things likepointer ownership aren't doumented. You wouldn't believe how muh software does not doument pointerownership. Aaarrrggg.2. Experiene shows that doumenting software helps to �nd weaknesses in the API. e.g. if something isdi�ult to doument learly, it's almost ertainly di�ult to use properly. Holes in the API have oftenbeen aught by doumenting the related APIs.3. i enjoy writing about topis whih interest me, and s11n obviously interests me.Users are not expeted to read the full doumentation in order to be able to use the library, but it is hopedthat the doumentation will be able to answer most or all of their questions, should they need a referene. Ifthe dos don't su�e, feel free to email us your questions (the address is at the top of this doument).25.2 Intrusivity (or not)�I hate writing apps around tehnologies like CORBA and Orale [database system℄ beause theyfore the developer to fous so muh on the spei�s of that tehnology, instead of on solving theproblem at hand.�Anonymous Software Developers11n goes to great pains in order to be as non-intrusive as pratial on lient ode. Clients wishing to supporta �onventional� serialization API, where lasses derive from some Serializable base type, will of ourse requiresome level of hard dependeny on s11n. Clients who use s11n's proxy support an, in many ases, add serializa-tion without having to hange their ore projet ode at all - rather, they simply need to register the appropriateproxies . Using the proxy approah an help keep lient-side dependenies on s11n down to a handful of plaes,and allows lients to ship s11n support for their lasses as an optional omponent.25.3 Compilation ostsYes, i atually do have something very negative to say about libs11n: lient-side ompile times absolutely suk.This was espeially true in versions before the mid-0.9 series, and is still a sore point for 1.0.x. It has been im-proved signi�antly in 1.1. A simple benhmark program is in the 1.1.3+ soure tree: sr/lient/sample/ompspeed.pp,and the soure �le inludes the results from my PC.The reasons for the horrible ompilation times boil down to:
• We internally reate many small template types during ompilation to ahieve �ompile-time polymor-phism� and fatory registrations for the s11n API. The former is required for API marshaling, amongstother things, and the latter is required for dynami reation of objets during deserialization44.44That's not entirely true as a blanket rule for deserialization, but it is a rule for s11n's implementation. We ould dith thefatory layer if we either had no, or very limited, support for polymorphism. That's not aeptable, of ourse.103

• Compiling template ode inherently takes more ompiler horsepower than non-template ode, espeiallywhen advaned features like partial template speialization are used.
• Compiled template ode inherently generates muh larger objet ode than non-template ode does. Thismeans longer link times, to resolve multiple opies of templates. This also means signi�antly larger objet�les, whih inherently means more i/o is required by both the ompiler and linker(s). Whether or not thisspei� aspet plays a signi�ant build-time role is arguable, and has never been benhmarked, but it isat least worth mentioning and annot be ompletely ruled out as a problem point.In the 1.0 tree, the main ulprits for hewing up ompile times are the various proxy registrations: it goesoverboard and installs many of them in ases where it doesn't need to in order to simplify lient-side usage. Inthe 1.1 tree we have fatored out the proxy registrations into as small of units as are pratial. This requiresa bit more forethought on the developer's part, as he must deide whih headers/proxies he needs to inlude,but the ompile-time bene�ts should be notieable in the vast majority of lient-side ases. At least, it is hopedthat they will be more tolerable :/.Again, my appologies for the slow ompiles, but i simply don't see a way around this problem without doingthings like build-time ode generation, where we ould build the s11n-related ode one time in a separate module.Code generators are out of the question, as far the s11n ore goes, beause they is not in-language. That said,lients are free to do whatever ode generation they feel they need to. By pre-generating s11n proxies andompiling ALL s11n support into loalized objet �les, is is theoretially possible to shift the ompile-time hitsto only those modules. Theory, that is, ompiliated by the nature of template instantiation rules. If you pullit o�, please share with us how you did it.The book C++ Template Metaprogramming [CTM2005℄ gives some real-world omparisons of ompile-timeosts of deploying template-based ode. While i do beg to di�er with some of their numbers (whih don't showany signi�ant slowdown until hundreds of types are used, whih is muh at odds with what i daily see in s11n),it is the only relatively full-�edged analysis i've seen on this aspet of template-based ode.25.4 Memory/RAM ostsHere we will fous on the theoretial and abstrat osts of system memory (RAM) vis-a-vis serialization via s11n.Filesystem spae is not a speial onern in the ontext of s11n, as �lesystem limits apply to any ode whihsaves data. That said, s11n's i/o layer does no unusual triks, using only the standard i/ostreams interfaes,so s11n should not exhibit any sort of �unusual� �le aess osts. Likewise, it does no unusual memory-relatedtriks like reimplementing new or delete, or using ustom alloators.At an abstrat level, serializing an objet requires that we make a logial opy of the objet. This is of oursenot heap, even if only beause Serializable objets have, by their very nature, some number of data members.In abstrat terms, let's naively assume that the opy is twie as large as the original. In onrete terms, this ishighly unlikely to be the ase: the serialized data of ourse has its own internal overhead. To understand whatthis overhead might look like, let's take a look at one possible implementation for an s11n Data Node type,keeping in mind the basi requirements plaed on suh types by s11n (setion 4.2). A basi implementation,not optimized via referene ounting, et., may very well ontain the following private data members:
• Two std::strings: one to hold the node's name and one to hold its logial lass name.
• One std::list<NodeType*>, or similar, to hold the hildren of the node.
• One std::map<string,string>, or similar, to hold the key/value pairs of the node. Remember thats11n internally uses lexial asting for POD-type type onversion, so internally all properties are storedas strings. While this might sound horrible, this is a simple fat of life and also exists in the world ofXML, so i don't feel one bit bad about it. (Besides, most std::string implementations are optimized alot better than most people give them redit for.)When serializing lots of small objets, this might be huge amount of overhead, relatively speaking. i expliitelysay �might be� beause it really depends on fators like referene ounting, et., in your STL implementation.As far as i am aware, all STL implementations use suh features in their std::string lasses. Sine s11n usesstrings extensively for storing raw data, s11n an indiretly bene�t from suh features if your STL providesthem. In any ase, as the size of the Serializable objet goes up, the relative memory overhead of serializingmany of them drops. This is little onsolation, i understand.104

In addition to the memory ost of strings, there is the runtime ost of lexial asting. For string-typed propertiesa lexial ast is a no-op45, but properties are often not natively stored as strings. e.g. in MyObjet, we mightstore the hange_time property as a long int, and de/serializing that property will ause a short detourthrough an ostream operation (for serialization) or istream op (for deserialization).To be lear about all of this �massive overhead�, though, onsider the following lient-side all:s11nlite::save(myobjet, std::out);Before that funtion is alled, and after it returns, the notorious �seond opy� does not exist in memory: itonly exists for the life of the serialize operation, and it is thrown away like a used tissue before that operationreturns. That is: the ost is an s11n-internal one, and of no diret interest to the user, but the user should beaware that serialization will eat up memory proportional to the size of the objets being de/serialized (whatexatly that proportion is, is probably unknowable for all pratial purposes).Remember, too, that lient-side objets often also have internal data whih is not serialized, so the idea thata serialized opy is heavier than the original objet ertainly does not apply in all ases (mainly it applies tosmall types - those with only a few POD data members or one ontainer).Deserialization normally has similar osts: we must build up a tree of nodes and populate an objet with thedata (reating the objet if needed). Where there might be a big di�erene is the spei� i/o handler: if itbu�ers all of its input before it begins deserialization then the memory osts jumps, theoretially/abstratly byapproximately another fator of roughly 1x. That is, it is potentially possible that a deserialization results ine�etively 3x the memory of an objet (again, very roughly guestimated). In pratie this 3x explosion shouldbe extremely rare or non-existant beause:1. All of the shipped serializers do no speial input bu�ering: they read input stream-wise, reating nodes asthey go, until EOF or they load one omplete root node. This is �bu�ering� in the sense that we transformthe stream ontent to s11n nodes before passing it bak into the framework for deserialization proper, butwe do not keep the stream ontent: it is disarded diretly after onsumption.2. In deserialization we either have an objet to deserialize diretly into or we have to reate one. In eitherase we have the same as with serialization: e�etively two opies of the objet's data. The only di�ereneis that in the dynami-load ase we �rst build up the node tree and then the objet, whih is of oursethe opposite of serialization.There are ases, e.g. networking, where bu�ering a whole objet tree in a string might be required or mightotherwise greatly simplify other ode.It would be interesting to explore a �destrutive� i/o API, in whih:
• During serialization, we destroy eah node diretly after sending it down the i/o pipe.
• During deserialization, we destroy the node diretly after we deserialize its ontents.These operations are not possible with the urrent API due to the required onstness of various data. Suhoperations might also require either new de/ser algorithms or new onventions to aomodate, e.g. a post de/serfuntor whih algos are required to all on eah node. In any ase, at some point during serialization we wouldhave a full seond opy, but only for a fration of the time (while de/serializing the deepest leaves of the objettree, sine we must dive in depth-�rst). If i/o support were added diretly to a Data Node type and we addsuh a �destrutive� API, then it might be possible to ompletely eliminate all seond opies, at least at theroot level of an objet tree (we might need opies of individual objets). Suh support, however, is onsideredprojet-spei�, and well outside the bounds of the ore s11n API. That said, the general s11n model might beammendable to suh an option, perhaps with a little haking.25.5 Runtime speed: s11n and the �Big O Notation�It is arhiteturally not possible/pratial/feasible to impose maximum runtime requirements on the s11n API.For example, we annot impose the blanket rule that all serialization algorithms must perform their duties in(say) linear time. Stream i/o is one of the plaes where we simply won't be able to get around paying at leastlinear runtime osts. Client-side algorithms are free to do whatever they like.45In API terms s11n doesn't know the di�erene between string and int and AlaskanPolarBear::MatingInfo, but some internaloptimizing is done to ensure that strings go through as little translation as possible. All that happens, in a worst ase, is astd::string opy, whih is known to be referene-ounted in most (all?) STL implementations.105

As a general rule, most de/serialization algorithms inherently have e�etively linear omplexity with some on-stant overhead, but as they may all arbitrary de/serialization algorithms in the ourse of reursive serialization,they an make no guarantees in this regard. One known exeption to the �linear guideline� is the Serializerswhih do entity translation on their property data (most do this to some degree). The �generi� entity transla-tion algorithm use by s11n is known to perform slowly. i an't name an O notation for it, but it's not a prettyone in any ase. i would be extremely happy if someone would ontribute a more e�ient implementation ofs11n::io::strtool::translate_entities() :).i will openly admit to having never omprehensively benhmarked nor pro�led libs11n. i have run some smallspeed tests on my standard 1.4GHz PC, and the numbers were well within what i personally onsider to bereasonable. For example, an average load-from-stream rate of 20k-50k objet nodes per seond, depending onthe Serializer, and saving is normally faster. Paul Balomiri, an Austrian s11n user, reports using s11n for some10 million data nodes, 1 gig of XML data, taking 3 minutes to load: this works out to 55k/seond, whih islose to my numbers (but far, far larger than my data sets).In my opinion, the fat that Paul an get 10 million data nodes in memory at one without thrashing his systemto death really says something about his STL implementation, onsidering the theoretial memory ost of eahnode (as explained above). i ashamedly admit that i was shoked and happily surprised at �nding out that s11nsurvived Paul's data set.i personally use s11n in over half-a-dozen projets, none of whih have nearly the data requirements of Paul'sprojet. i typially save lists and maps, often nested 3 or 4 levels deep, and very rarely more than 10-20k objets(and normally less than a few hundred). Again, i haven't benhmarked save/load times, but �to my eyes� s11nappears to be fast enough to suit the vast majority of lient needs. In any ase, i annot say that i have everfelt that the load/save times are �too long� - they seem well with reason to me, from a user's point of view.That said...There are ways to help speed up s11n if you are willing to look into options like using a ustomized DataNode type or implementing your own Serializer interfae (or sublass). The ore library is quite small and99.9% template ode, so it may bene�t from ompiler optimizations, and �probably� wouldn't diretly bene�tonsiderably from most speed-related tweaking. The internals of a Data Node ould be implemented moree�iently if one is familiar with that level of optimization (i'm not, really), and the i/o-related ode ouldertainly bene�t from some optimization as well. Keep in mind that s11n's ore does not rely on the s11n::ioode in any way, but that s11nlite does. This means that you an use the provided ore and your own i/ointerfaes if you like. Users who think that suh i/o or node type ustomizations might be interesting options toexplore should feel free to get in touh with us through the development list and we an disuss some potentialoptions.25.6 Code maintenane osts�Code maintenane�, in this ontext, essentially means, �how muh time one must write s11n-related ode.� Allsoftware has maintenane osts, and these osts are not always trivial.It is my �rm belief that making s11n any less ostly, in terms of maintenane, would be extremely di�ult toahieve. In the half-dozen or more projets i urrently use s11n in, the s11n-related ode is e�etively write-and-forget. One an objet is Serializable, it's always a Serializable, and is usable in all s11n ontexts using thesame APIs as all other Serializables. Thus one that ode is in plae and known to work, it normally beomesa pure bakground detail.With the same major-minor number of s11n, major onventions will never be hanged, so there shouldn't besigni�ant maintainene-related osts in upgrading. Within a development tree, or between, say 1.0 and 1.2,then 1.2 to 1.4, nearly anything might hange, so upgrading s11n might have porting osts.Changes as major as an arhitetural overhaul would be denoted by hanges in the major number. In that ase,of ourse, there may be any amount of porting osts.25.7 MoneyIt would be naive to say that deploying s11n is free of monetary osts. As the old saying goes, �time is money�,and thus the general rule is:s11n's monetary ost of deployment is equal to your hourly ost of software development.That is, every minute of your time it takes you to deploy s11n osts you (or your lients, or someone) oneminute of time. Whether or not that time atually osts anyone money or not is not the point - the point is106

that deploying anything osts someone some amount of their own personal time slie. (Now if i only had 50ents for every hour i've spent working on s11n...)The time-is-money equation is of ourse nothing new, and applies to any software deployed anywhere. Butwe're not here to disuss just any software, are we?i personally onsider s11n to have a lower-than-average deployment ost than most Open Soure libraries.The main reason is touhed on in the previous setion: most lient-side ode is write-and-forget, rather thanwrite-and-maintain. This means, for example, that implementing a serialization algorithm for a given type(or family of types) is a one-time e�ort. The exat time it takes to write suh an algorithm depends on theomplexity of the problem, of ourse, but by taking advantage of existing algorithms for ommonly-understoodstrutures, like the STL ontainers, we an ut oding times even further. For example, proxying and saving astd::map<int,std::string> equates to approximately the following ode:#inlude <s11n.net/s11n/s11nlite.hpp>#inlude <s11n.net/s11n/proxy/std/map.hpp>#inlude <s11n.net/s11n/proxy/pod/int.hpp>#inlude <s11n.net/s11n/proxy/pod/string.hpp>s11nlite::save(mymap, std::out)So, the overall money ost an be answered with this question: how long does it take you to do those steps?As far as the e�ort it takes to make the average lass Serializable - i normally need 5-15 minutes to inludeall the proper headers, register any proxies i need, write the ode, and do basi tests. Registering proxies forwell-understood types - e.g. the standard ontainers (again) - is a job of under 2 minutes, even when typedby hand from srath. Again, one these registrations are in plae, they are bakground details whih needn'tworry anyone anymore. Granted, i know the library intriately, but from my lient ode i behave as lient odeshould (that is, exatly what doumentation says to do), and thus in prinipal any experiened oder an hurnout s11n algorithms quikly, and therefor heaply, one they have done it a few times.26 Common problems"I preemptively aept that from some perspetive, these absolutely suk."Rob DonoghueIn this setion i impart some of my hard-earned knowledge with the hope that it saves some grey hairs in otherdevelopers...26.1 Satan speaks through the onsole during ompilationIf, during ompilation, your terminal is �lled with what appear to be endless sreens of gibberish from themouth of Satan himself, don't pani: that's the STL's way of telling you it is pissed o�.It may very well be one of these ommon mistakes (i do them all the time, if it's any onsolation):
• You're trying to serialize a type whih isn't yet registered with s11n. This often happens when serializingontainers: remember that the ontained type(s) must be Serializables, and that a map's value_type (apair type) must also be made Serializable in order to make a map Serializable. This will normally showup as an error saying that no operator()([something℄) is de�ned for the type.
• You've swapped the arguments for a de/serialize() all. By onvention, nodes always ome before Seri-alizables in the parameter list. Swapping these will ause you no end of error messages from Hell, withthings like, �no suh list<..>::impl_lass()...� or �list<..>::hildren().� The �rst hint that the args areswapped is that it's trying to all a node_traits funtion on your Serializable.
• You've tried to pass a pointer as a node argument. Serializables are aepted by the ore serialize()regardless of whether they are passed as pointers or not, but nodes are only passed by referene. Why?Beause nodes are easy for the API to ontrol in this regard and Serializables aren't, so Serializables getsome extra leeway (besides, it was trivial to implement the pointer-to-referene translation in SAM). Thisproperty internally simpli�es many operations on Serializables, as well.107

• You're trying to pass a (Serializable *) to an algo whih does not want a pointer, and this is showing upas a failure in the ability to onvert between (Serializable*) and (Serializable). Double-hek your allsto algorithms other than the ore serialize() algo. As of 1.1.3, there is also a deserialize() variantwhih aepts a referene to a pointer.
• You have jumped from s11nlite to s11n without being aware of the di�erent template args required bylike-named funtions in the s11n namespae. Shame on you. Almost without exeption, the s11nlite::funtions with the same name as s11n:: funtions are missing one template parameter (the �rst one) - thedata node type - beause s11nlite hides that abstration. That said, in many ases the alls are idential,beause template type resolution will do the right thing, in whih ase the s11n/lite funtions are basiallythe same. s11nlite dupliates/forwards lots of funtions simply to keep a whole usable lient-side API inthat namespae. Be sure to hek for di�erenes before freely swithing between the two (see the APIdos).
• Const errors during a de/serialize all: make sure that your Serializable's [proxy's℄ serialization operatorshave the proper onstness, as de�ned in setion 5. In the ase of a proxy, you may have to split it into twofuntors: one eah for de/serialization, and be sure to add #define S11N_DESERIALIZE_FUNCTOR ... tothe registration all. This should rarely, if ever, be absolutely neessary, however.
• When fething a hild node during a deserialize operation using, e.g. s11n::find_hild_by_name(), besure you use a (onst NodeType *) and not a non-onst (NodeType *), as the parent objet is onst inthat ontext.
• When iterating over ontainers, be sure to use onst_iterators if the NodeType or SerializableTypepassed to the funtion are onst, as appropriate.To be honest, though, those are just the ommon ones - any minor violation in usage will ause the STL to gohaywire, as i'm ertain you have already experiened many times in your oding life. The important thing isto remain alm and simply try to understand what the ompiler is telling you. Often a single STL usage erroran lead to literaly tens of kilobytes of error text (i was one punished with 70k for making a one-letter typo),but after eliminating the �rst error the others are likely to go away. Elimination of the problem is normallystraightforward one the STL-speak is deoded.26.2 Containers serialize, but fail to deserializeSee also setion 23.5.2.This is almost invariably aused by a simple logi error:(Been there, done that.)When serializing ontainers, it is essential that eah ontainer is serialized into a separate node. After all, eahontainer is ONE objet, and one node represents one objet. It is easy to aidentally serialize, e.g. both alist<int> and map<string,string> into the same node, but the result of doing so is unde�ned. That is, itwill serialize, but deserialization may or may not work (don't ount on it!).If you've done that, there may be two ways to reover from it (assuming you need to reover the data):
• Edit the output �le and split the nodes up manually. The feasibility for hand-editing depends on theSerializer used: some are not hand-editable. Tips: s11nonvert (setion 21.1) an onvert it to otherformats and s11nbrowser's ut/paste features might be useful here (setion 21.2).
• Programmatially �sh the data out of the node, e.g. using s11n::find_hildren_by_name() to separatethe various hildren. In a worst-ase (all entries have the same name, or names are nondeterministi)you'll need to do it based on node_traits<>::lass_name(), but that would be no fun at all, as theyare unpreditable. (Expeting an �AType� node? Think again - you got a �BType�!)Also, it is essential that you use always use omplementary de/serialization algorithms/proxies. For example,if you use serialize_streamable_map() to save a map, then use ONLY deserialize_streamable_map()to deserialize it, as any other algorithm may struture the serialized data however it likes, as de�ned in itsdoumentation. Be aware of eah algorithm's weaknesses and strengths before settling on it, beause hanginglater may not be feasilbe (old data won't be readable without, e.g. speial-ase ode to hek for it and use the�old� algorithm - but suh ompatibility heks are possible using s11n's proxying model).108

26.3 Abstrat Interfae Types for Serializabless11n's lassloader an handle abstrat Interfae Types: simply add this line before inluding the registrationode: #define S11N_ABSTRACT_BASEThat's all. This does not have to be added for sublasses of that type.For the urious: this installs a no-op objet fatory for the type, as those types annot be instantiated, andthus annot be reated using new(). As far as the lassloader is onerned, trying to instantiate an abstrattype simply auses 0 to be returned.27 Evangelism"If I an sell tikets to Red Sonja and The Last Ation Hero, I an sell almost anything."Arnold Shwarzenegger, while running for governor of California"I want to make sure [a user℄ an't get through ... an online experiene without hitting a Mirosoftad."Steve Ballmer,http://www.nn.om/2004/TECH/internet/03/26/seah.mirosoft.ap/index.htmlObviously, i've got a lot to say about s11n. i mean, how many other Open Soure projets of this size haveomplete API dos, a web site full of example ode, and a manual of this size ;).So far i've tried to keep the hype down, but it's sometimes di�ult :). In this setion i will let loose andexplain, in no partiular order, some of the library's features whih i �nd partiularly interesting, useful, or justdownright ool.27.1 Pointer/referene transpareny for Serializables in the ore APIThat is, the following are equivalent, assuming list is a pointer type:s11n::serialize(mynode, list);s11n::serialize(mynode, *list);One s11n ontributor, martin kra�t, is always trying to talk me out of this, but the fat is, that subtle featureallows some really amazing ode redution bene�ts elsewhere. For example, onsider what we would have todo for proxies if they had to expet either a pointer or a referene to a Serializable? You got it: we'd have todupliate every serialization operator for every serialization proxy. No hane i'm gonna tolerate that, so thepointer/referene transpareny stays. It is implemented, by the way, via a single template speialization forSAM (a few lines of ode). The reality is that these few lines of ode greatly redue maintenane osts elsewhere.See the map/list algos, all of whih handle pointer and value types with the same ode, for some examples ofwhat this allows us to do. Or just read on to the next setion, where we evangelize just exatly this tehnique...27.2 Container-based algos whih are pointer/referene-neutralConsider these two data types:typedef list<string> StringList;typedef list<string *> PStringList;i banged by head for quite some time to try to �gure out how to do de/ser those via one algorithm. That's notas straightforward as it sounds beause for deserialization we need to dynamialy load the pointer types, anddo so polymorphially when possible. Type-dependent branhing isn't always syntatially possible in C++, sothe proverbial another layer of indiretion was needed to solve the problem of �uni�ed ode� for pointers andreferenes. Sine the CL layer did the dynami loading, i wrote up some templates to hide the syntati and109

de/alloation di�erenes between pointer and referene types, stiking the CL part behind the pointer-basedbranh and essentially doing nothing in the referene branh46.After some e�ort and experimentation, a single pair of remarkably small algorithms evolved, and they now takeare of de/serializing any standard list, vetor, and multi/set. That is, the following operations all go throughthe exat same few lines of ode to do their work:StringList * slist = new StringList;PStringList * plist = new PStringList;// ... populate lists...s11nlite::save(slist, std::out);s11nlite::save(plist, std::out);s11nlite::save(*slist, std::out);s11nlite::save(*plist, std::out);That demonstrates two separate s11n features: ore API transpareny for pointers/refs to slist and plist,as overed above, and algorithm-level pointer/ref transpareny for the (string) and (string*) elements of thelists. The funtion s11n::list::serialize_list() urrently does all list-based serialization for the framework(that's a LOT). Likewise, s11n::list::deserialize_list() does all of the deserialization. (Reminder, that'sthe default implementation, and it an be replaed for any spei� ontainer type.)Not impressed, eh? Let's look only at lines of implementation vs. funtional sope:
• serialize_list() is implemented in approximately 11 lines of non-debug ode.
• deserialize_list() has approximately 20.Consider type L, whih is any type onforming to the most basi std::list onventions (this also overs vetor,deque, set and multiset). Now onsider the type ST, whih may be any Serializable Type, inluding L. Withthe above algos we may generially de/serializer any ombination of:L<ST>L<ST*>L<L<ST>>L<L<ST*>>L<L<ST*> *>L2<L<L3<L4<ST*>> >ad in�nitum...Get the point?Now onsider that we an do the same, using exatly two algorithms, for any ombination of standard map-styletypes (out of the box that's std::map and multimap, but lient-side map-likes an also work with these algos).Let's assume M is a map[SK,SV℄, where SK and SV are both Serializable types. Now let's begin to look at thatmore losely, mixed with the Serializabe list type (L) from the above examples:M<SK,L<SV>>M<SK,SV>M<SK *,SV *>M<L<SV>,L<M<SK*,SV>> >ad in�nitum, ad nauseum...and Amen, brothers! 47By inluding the proper proxies, lient ode gets immediate aess to all of the above ombinations, plus thetrillions more they imply. Clients do pay ompile- and link-time osts, plus fatter binaries, to be sure, but the46That �nothing� turned into a long-standing bug-in-waiting, reported by Patrik Lin, whih was �xed by adding a one-line�something� in 0.9.17.47What would the Evangelism setion be without an Amen now and again?110

ease-of-use and oder-e�ort bene�ts are, in my opinion, di�ult to improve upon. Hopefully, future ompilersor development tehniques will allow us to ut the ompile-side osts. And if not... we'll just need faster PCs;).Please note that i'm not touting the leverness of the algorithms themselves, but the �exibility of the s11narhiteture, whih allows suh generi algorithms to plug right in.If the dimensions of the possibilities don't seem ool to you, then s11n probably an't impress you at all (whihis all �ne and good, i mean - to eah his own opinion). However, sine this is the Evangelism hapter, i'll goahead and say: it is my �rm belief that s11n supports, out of the box, more ombinations of data types thanmost serialization frameworks ould ever hope to be able to support at all (and even then only with unrealistiamounts of lient-side or support ode). The main reason for this is that s11n takes blatant advantage of newerC++ features whih many mainstream libraries shy away from, often for ompiler portability reasons. My takeon ompiler portability is simply this: if we want to save 21st-entury data types e�etively and �exibly, weneed to start using 21st-entury tools and methodologies. :-P27.3 �Casting� between �similar� typesDue largely to the above-mentioned features of pointer/referene transpareny, s11n allows us to onvert to andfrom �similar� types with ease (though not neessarily with great e�ieny). Witness:list<SomeT *> dlist; // SomeT is any Serializablevetor<SomeT> ive;// ... populate ive ...assert(s11n::s11n_ast(ive, dlist));If the assertion sueeds, dlist ontains a list or pointers to SomeT, opied from the objets in ive. Theyould be int, har, MyType or whatever - any Serializable will do.A generi implementation of s11n_ast() an be ahieved in these few operations:1. Create a temporary node.2. Serialize the soure Serializable into the temp node. On error return false.3. Deserialize the node into the destination Deserializable and return result.The atual implementation looks like:template <typename NodeType, typename Type1, typename Type2>bool s11n_ast(onst Type1 & t1, Type2 & t2) {NodeType n;return serialize<NodeType,Type1>(n, t1)&& deserialize<NodeType,Type2>(n, t2);}Again, i'm not saying this is a partiularly e�ient way to onvert objets, but it is extremely generi. Intheory it will work with any two types whih use the same (or ompatible) de/serialization algorithms. Outof the box, that's already millions of ombinations, only ounting STL-standard ontainers and PODs (thatsaid, many non-STL ontainers work �awlessly with the STL-intented algos, as long as they follow the generalpublished onventions).
111

28 Comparing s11n and Boost::serializationThis setion tries to give an overview of the major similarities and di�erenes between s11n and the only otherserialization framework for C++ whih an provide the range of the features s11n does: Dr. Robert Ramey'sBoost serialization library, a member library of the Boost.org projet. Below we will spei�ally address pointsand features whih appear in either of s11n or Boost, but probably not in other libraries. Though �Boost� reallyrefers to both an organization and the software that organization releases, here we will use the term Boostspei�ally to mean Robert's serialization library, whih is part of the main Boost distribution as of version1.3something (summer of 2004, if i reall orretly).As a software library user, if i didn't have s11n, Robert's library would de�nitely be my hoie for serializationsupport. If you are undeided on serialization libraries take a look at the Boost projet, whih provides notonly serialization, but a huge number of industrial-strength libraries: http://www.boost.orgPlease keep in mind that this hapter is not an attempt to sway you away from using Boost! On a oder level,i fully respet Robert's implementation and the design deisions he has made, and am not attempting to showthat either library is signi�antly all-around better than the other. However, s11n has only one �ompeting�produt, as far as i'm onerned, and i thought it might be interesting to ompare them here. We will assumethat the user is familiar with both s11n and Boost, or at least familiar with some of the main design aspetsfrom both.To open the omparisons on a positive note: Robert and i appear to agree on a great many design deisions.As his dos urrently say about this library:�Its has lots of di�erenes - and lots in ommon with this implementation.�A quik omparison of the APIs would suggest that the projets two even o-developed at some point, thoughthis is not the ase48.28.1 Cans and annotsLet's take turns listing a few features one lib has and the other does not, onsidering only out-of-the-box featureswhih lients an get to by following the respetive library manuals:
• Boost supports serialization of referene members in serializable lasses, at least partially (the supportmight be fuller than the examples suggest). s11n does not diretly support this.
• s11n supports loading without knowing the input format. Boost requires knowing the stream format andusing the appropriate handler type.
• Boost internally traks serialization of pointers and therefor inherently supports serialization of graphs.s11n requires lient-written proxies to do this.
• Using Boost in lient ode e�etively requires a hard dependeny on muh of the other Boost library,whereas s11n (as of 1.1) has no 3rd-party dependeny requirements. Likewise, the boost.org libs providesa whole framework, whereas s11n provides only a serialization layer. (We will not ount the STL as adependeny in either ase beause an STL implementation is required by most modern C++ ode.)
• Boost diretly supports serializing C-style arrays. s11n's author despises arrays and avoids them likethe plague, but the framework theoretially supports them: use either a for() loop or a for_eah()funtor. The nature of both libraries' support is very di�erent beause of the fundamentally di�erentpointer serialization poliies.
• Boost provides several desireable features whih s11n does not: std::loale and wide har/string sup-port, shared_ptr support, and deserialization of lasses ontaining referenes, to name a few.
• Likewise, s11n has a few interesting features whih Boost does not: it overomes some of Boost's urrentDLL-related limitations, supports transparent �le de/ompression, and more data handlers (3 formats inBoost vs. s11n's 8).Most of these are relatively small di�erenes or express learly di�erent design philosophies or even simply showa fous in a partiular design diretion. The overal range of features in both libraries is more or less omparable.i believe that both libraries an be used to implement most, if not almost all, features of the other with somerelatively minor internal hanges and the appropriate API wrappers.48Robert, you interested? :) 112

28.2 Compiler and platform portabilityBoost has s11n beat hands-down here. Robert has the major advantages of:
• A lot more experiene than i with multiple platforms. My only development platform is Linux, withoasional aess to a Solaris mahine. In any ase, my pratial experiene is limited to the GNUompiler and build tools. (That said, s11n is rigorously restrited to ISO-only C++ features.)
• The massive peer review e�ort whih Boost.org is so famous for. This should never be underestimated.
• His software is built on top of other high-quality Boost software (e.g. Spirit does the �le parsing), insteado� of hand-rolled support ode (e.g. the s11n �le handlers are mostly implemented in �ex-based parsers,rather unfortunately).
• One of Boost.org's ore goals is platform-portable libraries. While i always try to adhere to publishedstandards, and never use platform-spei� onstruts (exept, of ourse, for platform-spei� operations,like opening DLLs), i annot personally test or support even a fration of the platforms out there.If your software already uses Boost, you should strongly onsider using the Boost serialization library instead ofs11n. i annot on�dently say that Boost-using ode would bene�t enough from s11n to justify the additionalintegration osts, onsidering that a good alternative solution is already available in Boost. While i do believethat s11n provides more features than Boost out of the box, i also believe that Boost ould be made to do most,or even all, of the things s11n does with relatively little work. (i suspet that is a side-e�et of their STL-isharhitetures.) Even more spei�ally, i think that with the appropriate wrappers, the s11n and boost APIsould probably be made to e�etively mimi one-another, at least where their features allow it, as their modelsare oneptually very similar and inherently very adaptable to this level of modi�ation.28.3 Arhives vs Data NodesBoost uses an abstrat �Arhive� data store onept, whih is fundamentally similar to s11n's Data Node model.The main di�erene is that s11n separates the Node and i/o formats, where the Arhive is a ombination of datanode and i/o marshaler. From a lient level there would appear to be little di�erene in most ases. s11nliteexpliitely abstrats away s11n's node type and i/o format, but i believe a similar wrapper would be trivial toadd around the Boost ode. Then again, the Boost API is simple enough that a wrapper like s11nlite is notreally neessary.Boost's approah is very similar to the model used by s11n's predeessor, whih simply had a set of free funtionsfor saving to or loading from the three di�erent formats we had at the time. While it is straightforward andsuitable for many purposes, i fundamentally feel that the only s11n-internal entity whih should have to knowabout a stream's format is the ode whih reads and writes that spei� grammar. Even the user shouldn't haveto know what format he's using (admittedly, this is a purely philosophial standpoint, not a sienti�ally-bakedone). Atually, the Arhive type does not publish any stream-related APIs, even though they work similarlyto streams. This means that they an be implemented to be grammar-neutral by simply adding another layerof indiretion behind the existing Arhiver interfae or implementing your own Arhiver whih uses, e.g. adatabase as a bak end.s11n internally uses a fatory interfae for loading all i/o handlers, regardless of whether they are statiallylinked in with an appliation or are truly dynamially loaded via DLLs49, and enourages users to not give ahoot about what data format they are atually using.One perhaps-not-immediately-obvious advantage of s11n's approah is that it inherently provides the statiapproah as well as dynami loading. That is, if you would like to speify a spei� grammar handler there isnothing stopping you from doing so:MyClass myobj;...s11nlite::node_type dest;s11nlite::serialize(dest, myobj);s11n::io::funxml_serializer ser;ser.serialize(dest, std::out);49It is tehnially possible to write a lassloader whih literally reates the lasses as needed, but i have never seen this implementedin C++ (the lass reation/ompilation overhead would be extreme, i think). It's been demonstrated in PHP, for example: reatingdatabase lasses on-demand by analysing db table strutures, reating lass ode to mimi them, and eval'ing it.113

And the onverse for loading. You will need to inlude the proper serializer header(s), of ourse. The moregeneri approah, and one whih does not require the headers for eah serializer is:std::auto_ptr< s11nlite::serializer_interfae >ser(s11nlite::reate_serializer(�funxml_serializer�));if(! ser.get()){ ... damn ... }ser->serialize(dest, std::out);While Boost does not urrently appear to o�er suh a feature, i believe this is largely beause the overall Boostprojet urrently laks a ohesive fatory API, and this support ould probably be added to Boost with relativelylittle work.28.4 Non-intrusivityThough our approahes are quite di�erent, both libs provide funtionally similar non-intrusive (i.e., proxied)serialization support. Robert's approah (via overloaded funtions templatized on the Arhive type) is ertainlymore portable to older ompilers than s11n's approah (mainly via template speializations). i must admitthat i simply never thought of his approah before seeing his ode, as s11n's model �t so well with templatespeializations that funtion overloads were simply never onsidered. In theory they an be used in onjuntionwith s11n's model, and vie versa. i annot urrently think of any reason why either approah would befundamentally more or less powerful than the other, nor do they appear to be mutually exlusive in anyway. Funtion overloads are ertainly oneptually simpler, and probably muh easier for new users to grasp,partiularly those who are not well-versed in C++ templates.28.5 Serialization of pointersThis is one of the points where, again, i admittedly stray far from onventional wisdom. Boost takes a veryorret approah and has built-in support for traking the addresses of serialized pointers, suh that eah isonly serialized one and a graph an be orretly deserialized by the ore library without user intervention orspeial support. Boost also has speial support for boost::shared_ptr<T>, sine that is a ore omponent ofthe overall boost.org framework.s11n di�ers quite radially, taking the �onvenient� approah of simply treating serialized pointers as non-pointers. That is, serializing (T) and (T*) are funtionaly identially. During deserialization we rely on C++'sstrong typing support to put us into a ontext where we an determine whether we need to deserialize a heap- orstak-based objet. For example, deserializing data into a list<T*> will reate T objets on the heap, whereasdeserializing a list<T> will not. This type of di�erene is handled transparently by the library. The major ostfor this is that it (probably) annot provide built-in pointer traking support for doing things like de/serializinggraphs.The separation of the ore serialization API and i/o API in s11n make this even more di�ult, as we need adata-format-agnosti way of building inter-node pointers, so to say. Again, this is a deision whih i feel liesway outside of s11n's sope. For example, i don't want someone who uses s11n-generated XML in a non-s11nappliation to have to onform to the s11n-imposed onventions for embedding referenes to other nodes in theXML tree. Why not use a standard like those emerging from the W3C? Beause s11n is data format agnostiand therefor doesn't know about any grammar standards. See the problem? i refuse to enfore fore suh arequirement on the base Serializer interfae, as i feel it would greatly ompliate their implementations. Havingto write i/o parsers is bad enough as it is, and having to put that muh more work into them doesn't sound likemy idea of a fun oding session.Serialization of graphs and other pointer-related triks an be and have been done in s11n, but the ore libraryprovides no speial support for them. Quite the opposite, the ore goes out of its way to hide the di�erenes ofpointers and non-pointers!28.6 Data VersioningOne fundamental design deision whih needed to be made very early on in s11n's development was the issueof how to trak versions of data layouts, suh that we an tell if we are loading data with a di�erent logialversion and abort deserialization if we do.This is another one of those points where i seem to disagree with every respetable programmer in the world.Strongly disagree, even. My deision was, and probably always will be:114

Data versioning support does not belong in this library's ore. Period.Of ourse, it's not fair to make suh a strong blanket statement like that without baking up my ase. Before ido, a short dislaimer is in order:Libraries whih do not use a key/value pair model for serializing lass data really do require a built-inversioning system, and a lak of suh support in these libraries would indeed be a problem. Theywrite X data members to a stream and expet to be able to read X items from the stream, and needsome ore-aessible way of providing at least basi veri�ation of that. Fair enough.For referene purposes, let's all Boost's overal i/o approah the �X/X� (or �positional data�) model, as it isinherently limited to the physial ordering of the serialized items. We ould also all it the Ordered model,but �order� also has other impliations whih may or may not apply here. In any ase, what distinguishes itfrom s11n, for our purposes, is that X/X requires data versioning to be built in to the ore serialization library,whereas a key-value-pair (KVP) model does not.My ase against inluding this support in the s11n ore boils down to the following:
• Doing so requires imposing �some sort of versioning onventions� on all lients. e.g. use inrementalnumbers or onventional software version numbers, like 1.2.3. This would have been an arbitrary designdeision whih s11n's author would have to impose on lients. The fewer suh onventions the libraryimposes, the better.
• Doing so requires s11n to have some idea of what onstitutes an inompatible version, potentially in-luding support for version number omparisons to allow operations like �support up to 2 revs bak� or�ompatibility == the same major and minor numbers, irrespetive of path level� or other suh oddness.
• How do we report versioning errors? Using the normal return-false approah or a speial approah (e.g.version-related exeptions)? Again: that would be an arbitrary deision whih s11n would impose onyou. The exeption approah doesn't (yet) �t into s11n's ore onventions, so it was avoided. (This isontinually under reonsideration.)
• My personal experienes has shown versioning to be a signi�ant hinderane. This is probably beausei ode, almost exlusively, on Open Soure projets, whih inherently tend to �utuate a lot more thanommerial produts do. (Mine do, anyway. ;)
• The KVP model, e.g. as used by XML-based appliations, appears to be far more version-�exible thanpeople give it redit for. Data versioning an be implemented within this model at theoretially any levelof a data tree - from the lowliest integer member to the root-most node of a data tree, and it an be doneindependently of any data format. There are many di�erent ways to implement this, both intrusive andnon-intrusive, and it would not be fair for s11n to impose any spei� implementation on you.
• Never in my oding life (let's all that 10+ years, if it makes a di�erene) have i ever needed data versioningfor proper funtion of my appliations. If the user feeds us properly strutured data, deserializationworks, otherwise it fails. Why make it more omplex than that? As in XML-based appliations, semantivalidation is neessarily a lient-side hoie and versioning falls into the ategory of semanti validation.s11n onerns itself with the struture of the data, and ares very little for the semantis of the data(and then only for lassloading, beause we have to store a unique-per-lassloader identi�er for eah C++lass).
• And �nally...Computers are inherently stupid, and the thought of a piee of software telling ME what data i ampermitted to feed MY appliation makes me queasy. It makes me downright mad, atually. This is ourdeision to make, not s11n's, and s11n's arhiteture allows us to make suh determinations at almost anygiven point in the deserializaton proess, should we want to.A quik, inomplete omparison of the properties of eah model reveals the following notable pratial di�erenes:
• The X/X approah is grammatially more ompat, potentially drastially so. For proof of this justompare any XML �le to the equivalent in a binary grammar. The addition of lient-transparent streamompressors (e.g. built on top of zlib or bz2lib) makes this point largely moot, at least for pratialpurposes (though not tehno-philosophially, beause suh features are not always readily available in allprojets). 115

• The KVP approah writes named elements and an searh for them later by name. Thus we an addproperties, remove them, hek under di�erent names for the same property, and other operations relatedto version interoperability. That apability is not quite missing the X/X approah, beause we an mapversion numbers to spei� deserialization operations, but we don't have the playroom whih KVP allowsfor.
• The X/X approah would appear to require more maintenane than KVP-based ode when a lass getsnew members. Robert's X/X implementation is quite sane, but still requires some amount of are on ourpart if we wants to support older data �les as our objets hange, if only beause (a) eah developer hashis own philosophies about version numbers and (b) the version number is de�ned at one soure odepoint and aounted for at another point, whih makes them easy to get out of syn, espeially in multi-developer projets. In X/X, a failure to hange a lass' version number when its serialization algo hanges(e.g. as data members are added or removed) an result in unpreditable, or even unde�ned, runtimebehaviour. (i believe Boost expliitely throws if it detets this problem, but i am not 100% ertain of that.RTFM.)
• The X/X approah possibly provides easier trakability of pointers when doing things like serializinggraphs. Theoretially, though i an't really bak that up at the moment. s11n's �deep pointer opy�poliy shifts suh �speial-ase� work to the lient, whereas Robert's ode handles all of this transparently.
• Data �les reated for X/X models are inherently unusuable by KVP models, but the other way around isnot the ase beause we an always disard name info later to reate X/X data from a KVP data set. Itis interesting to note that Robert's doumentation shows an example of serializing using a KVP interfae,in whih the key is internally disarded.Whih approah is better, KVP or X/X? As always, it really depends on what your needs are. i obviously preferthe KVP approah, and personally onsider details like data ompatness to be � issues of the past� (so sue me- i almost always hoose onveniene over drive spae).28.7 API ease of useBoost is probably muh simpler to get started with than s11n is. Boost's publi API very straightforward, evenalmost intuitive. While s11nlite's publi API is just as simple, s11n sets out to spei�ally abstrat away aouple more details than Boost does and has a proportionally (perhaps even disproportionally) higher learningurve. For example, Boost does not appear to have a publi fatory/lassloading layer, so those details neverome into play.One the learning urve is limbed, s11n and Boost have approximately the same ease-of-use, i think.Boost also takes advantage of operator overloading to provide a simpli�ed lient-side API. For example, if A issome Arhive objet and S is some serializable objet, you an probably guess what the following operationsdo: A < < S;A > > S;Fundamentally, this shouldn't be a problem to add to s11n. Pratially, however, s11n's use of the node_traits<>type as an API marshaler for arbitrary node types ompliates the matter, as the operators would really needto be part of that node_traits<> interfae. While i haven't tried it out, i do not believe it would add to s11n'sease of use the same way it does in Boost, mainly due to having to reate a traits objet (or some middle-man)to apply the operators to. Constness of nodes ompliates this - we would need two suh types, one for onstnodes and one for non-onst, in order to hold a onst-orret pointer/referene to the node. Tried that, and itwas ugly.Additionally, s11n's i/o model would inherently ompliate suh an addition, as disussed in setion 23.5.4.If a user is willing to stik with a single onrete data node type, suh operators ould of ourse be part of thatAPI. i am not keen on the idea of adding them to the ore node interfae, however, even though in Boost's asei do onsider them to be well justi�ed.28.8 Serialization TraitsThat s11n and Boost both use traits types to store information about serializable types is pure oinidene. Weboth use them for tying metadata to types for purposes of managing serialization, but we do ompletely di�erent116

things with them. Boost manages, for example, pointer traking, ustom RTTI [Run-Time Type Information℄,and data version number (a very lever plae to put it, atually), whereas s11n mainly uses it for providingtypedefs and (as of 1.1) aess to lass names (whih is oneptually similar what Robert does with his RTTI).It was by reading the Boost doumentation that i learned that s11n's proxying and traits approahes will onlyproperly work on C++ platforms whih fully/properly support partial template speialization. On others itmight not hoose the proper speialized types. i have no idea what ompilers might be troublesome here. Notmine, anyway ;). Again, this is a design hoie of s11n: it requires a more modern ompiler than Robert'slibrary does.28.9 E�ienyAgain, Boost has s11n beat hands down on this, on all aounts.One of the reasons is that Boost uses parsers written using Boost::Spirit, a true wonder of tehnology whihobsoletes tools like lex for C++ projets and generates ode whih ompilers an theoretially optimize downto the last bit. The unfortunate fat is that most of s11n's input handlers are written in lex, and this inludesa rather large amount of underlying support ode to help lex ode �t into the modern C++ world moresatisfatorily. Exept from the fat that it works quite well, the amount of lex support ode is not somethingi'm proud of.i would love to use Spirit in s11n, and have wanted to for over a year, but i always had problems building iton my boxes, and thus never ame to depend on it. i hope to inlude Spirit-powered parsers in s11n someday,beause Spirit is just too ool to overlook: http://spirit.soureforge.netTo be lear, neither Boost nor s11n inherently rely on either Spirit or lex, or any other parser framework forthat matter, but a serialization library without some form of inluded i/o support is pretty useless for mostases (but not all ases50!). This i/o support takes the form of some type of parser, but this is largely animplementation detail and normally need not intrude on lients at all.Another area where Boost is inherently muh faster than s11n is in its one-pass de/serialization model. TheArhive type is the i/o marshaler, and all de/serialization operations are performed diretly on Arhive objets.In s11n we de/serialize objets from/to ontainers, similar to how we would in an Arhive, and it is theseontainers of �raw� data whih are used by the i/o handlers. This is an unfortunate ost of the physialseparation of ore serialization operations and stream i/o, but one whih i believe is highly justi�ed for thislibrary.That said, it is theoretially possible to add internal i/o support to a new Data Node type and use that nodetype with s11n to provide similar funtionality as Boost's Arhive type. Likewise, it is theoretially possible tosimilarly wrap up Boost's Arhive type to use two-phase de/serialization (as if you'd want to). Both arhiteturesare very �exible to this type of hange.28.10 The interesting part is...In hindsite (after having written this hapter, whih inluded reading muh of Robert's doumentation andsome of his soure ode), the following points have beome lear to me:
• Robert and i are indeed, as he one said in an email, �kindred souls,� both out just trying to save ourobjets.
• On the surfae, s11n and Robert's ode have a few similarities. All oinidental.
• At the overall arhiteture level, they have an unanny number of similarities. Again, all oinidental.
• The implementation details are ompletely di�erent animals.That last point, in partiular, strikes me beause what's really interesting about it is: they are di�erent animalsfor ompletely di�erent reasons. That is, the features Robert's ode and s11n provide are not neessarily mutallyexlusive, but often exist either as di�erent approahes to the same end or as solutions to ompletely di�erentparts of the overall serialization proess. In some ases eah goes into areas the other simply has not explored.A ouple examples inlude:
• Robert's Arhive and s11n's data node models are not only both there to serve the same end (the lient'sinterfae to and from The Void), but also are both important templatized types for the arhitetures.50There are atually valid uses for serialization without any underlying i/o, like databases, shared-memory (where objets ouldbe written diretly), or even passing nodes around via a lipboard-like mehanism.117

• Robert's Serialization traits types trak pointers, version numbers, and RTTI info, amongst other things.s11n's traits provide the lass_name() funtion, whih logially overlaps somewhat with the RTTI fea-tures, and several funtors whih play a similar role as funtion overloading does in Boost's ode (and itdoes so in a mutually ompatible way, it turns out).The main impliation of this would seem to be that it might be ompletely worthwhile to look at either mergingin features from eah other's library or to work out some way to merge them. A simple disappearane of oneof the libs would not be aeptable by either of us, i'm ertain, and i do feel that both distinguish themselvesenough that they annot simply merge one-to-one. It would be interesting to �gure out how the ore di�erenesof, e.g. versioning and deep vs. shallow pointer opying, ould be abstrated into poliies types or other C++tehniques, suh that we ould present a single ore and build our own features on top of it. After having readmuh of Robert's doumentation, i have little reason to think that this is not possible. The di�ult part, ithink, is �guring out where the line between ore and lient-side poliies should ome in. Something to thinkabout, anyway...28.11 In losing: s11n.net and Boost.orgTo be lear, no s11n.net software has any assoiation whatsoever with Boost.org's software, and we won't defamethem by laiming any suh assoiation.From here on we swith from �Boost� meaning �Robert Ramey's Boost serialization library� to Boost meaningthe Boost.org libraries in general.Several people have written me to ask if i plan on submitting s11n to Boost.org for onsideration as a memberlibrary.i'm truly �attered by this question, but i have no plans on submitting s11n to Boost.org. The reasons are:(Please aept my appologies in advane if any of the reasons below seem presumtuous, pompous or evendownright stupid. Everyone's got their own quirks, and a several of mine are expressed below.)
• They are Gods, i am not51. They would eat me alive and all it a Virgin Sari�e Breakfast. i am along-time hobby programmer who's hobby serendipitously turned into not only his profession but alsohis lifestyle. A virtual hippie, so to say. By omparison, many of the Boost members are well-trained,seasoned veterans of far more design ommittees and software wars than i.
• i believe the Boost team would (quite rightfully) try to enfore a strit set of exeption onventions onthe library. As disussed in setion 4.6 of this manual, i urrently have reservations against doing so. idon't want to be faed with that reality quite yet. The day will likely eventually ome, but only after ifeel omfortable with all of the design deisions and their impliations.
• i would likely be required to expliitely support, or help to support, a wide variety of C++ platforms whihi will never in my life lay �ngers on. i ould not, in good onsiene, possibly laim to support platformswhos names i know only from #defines in onfig.hpp52. Likewise, i despise spending a signi�antamount of my oding time researhing workarounds for de�ient platforms, even if i do have aess tothose platforms. i love software development, and i want it to ontinue being play-time instead of turninginto work-time.
• My freedom to experiment in the main soure tree would be more limited, as stabler interfaes would bethat muh more important. Either that, or i would end up maintaining two di�erent opies. That wouldnot only be a real drag, but would also send the wrong message to users by providing two potentiallyinompatible APIs.
• While there are some ompelling di�erenes between s11n and Robert's implementation, our librariesare unannily similar in both nature and design. i believe that in bending s11n more towards Boost wewould end up at roughly the same implementation, or at least very similar features wrapped up in verysimilar interfaes. Neither Boost.org nor its users would bene�t from an overlap of that size, even if �someompetition within Boost might be a good thing� (as one writer suggested). Boost is a ohesive whole,and non-dupliation of features helps keep it that way.
• We ould probably never get a group onensus agreeing to keep s11n's deep-pointer-opy poliy (morelikely, i would be outvoted 400 to 1). Nor would we ever �nd a 100% all-around-agreeable fatory interfae,51�Ray, the next time somebody asks you if you're a god, say YES !� � Ghostbusters52i'll save the Tirade on the Illusions of Portability as Pereived by Most Autotools Users for another time.118

inluding the underlying onventions. Nor would most e�ieny-seekers even look twie at s11n's heavyuse of lexial asting, would demand internal native type support via, e.g. boost::Any, would requirestrit performane de�nitions, et. Fair enough, but that simply isn't my thing.By and large, i'm worried about Death by Committee even more than the death by Virgin Sari�e Breakfast,though i'm not sure who would die �rst, s11n or my desire to ontinue oding on it.To be absolutely lear: both this library and i would ertainly both bene�t greatly from the Boost ode reviewproess53! Well, the one of us who didn't die �rst would, anyway ;). i want to save my objets now, and s11ndoes that now... and does so without killing anyone54 :).It is possible, but i don't quite dare say �likely�, that i will at some point fork o� a opy of s11n whih is basedo� of the ore Boost libraries, targeted spei�ally at Boost-using lient ode. This primarily depends on theavailability of Boost on lient mahines (traditionally it is not preinstalled on most systems).One of s11n's long-standing design deisions has been to redue 3rd-party library dependenies to a minimum.Thus i spent 2+ years writing utility ode whih already exists in libraries like Boost :/. If we were to replae allof s11n's �utility ode� with Boost equivalents, we ould probably ut the size of the tree by 1/2, not ountingthe i/o parts (that makes up the majority of s11n's ode). And i ould �nally get rid of that damned stringutility library whih keeps hopping from soure tree to soure tree like a little virus.Assuming even a modest 20% ode redution, that would equate to 20% less ode to maintain, whih is alwaysa good thing. Of ourse, it also means relying on gawd-only-knows-how-many underlying libraries in Boost, theinterfaes and behaviours of whih we an only hope are stable from one version to the next. (To be lear, ihave no experiene with Boost version ompatibility, so i am not badmouthing them here!)Not to be underestimated: some of the Boost ode will theoretially beome part the �next� C++ standardlibrary and it would pay notable maintenane dividends to base s11n o� of these libraries as muh as possible.i feel ompelled to make a �nal onfession, as well, and explain the reason why s11n is not already built o� ofthe Boost libraries. This has been asked more than one, and the question is a fair one.i have some deeply-seated, admitedly somewhat eentri, philosophial problems with the Boost distributionpoliies. Not their liene, but the way their ode is distributed.In short, my message to the Boost team is this:If the ode was easy to install, i would have been using Boost sine years. Please provide some form ofonventional build proess (one that doesn't fore me to download the build tools!). Whether or notthey are Autotools, i don't are: a simple on�gure sript and/or Make�le would do. Justi�ation:as a library oder, if i do not believe that Library ABC will be on my target lient systems, i generallywill not introdue a dependeny on Library ABC in my libraries. i'm pedanti about that, to thepoint of even skipping over jewels like Boost if their value isn't relatively onvenient to ash in on.And get rid of the onfig.hpp �feature� of #error ing on the unknown ompiler version every timei upgrade my g!!!!! ARGH!!!!i admittedly get overly-annoyed when it omes to points like these, but if you guys will �x thesethings then i'm your newest onvert for life. The wonderful ode - and even omplete doumentation- is all there. Pratially a C++ Nirvana right before our drooling mouths, but it is nonetheless notas aessible as it should be.Potential Boost users: please pay no attention whatsoever to this man's ramblings - give Boost a try and youwill probably be amazed by its quality and range of features.29 Soure tree innardsThis setion ontain information about some of the implementation details of s11n, and is only of potentialinterest to those working diretly with the s11n soures. It may be of partiular interest to anyone attemptingto port the tree to another platform.53TODO: see if there's a Boost-supported proess to submit ode for review with the expliit idea that it is not targeted atinlusion for Boost. i suspet not, given the neessary overhead, but it would indeed be very interesting. A �Boost of Breed� stampof approval type of thing.54If this does happen to you, please �le a bug report. 119

29.1 Build tree strutureThe build tree is strutured in a fairly straightforward, mostly onventional manner. It looks more or less likethis: to/ = the omplete build tools (to means= �the other on�gure�).do/ = the dos (this �le), plus possibly some Doxygen stu�.inlude/ = empty (just one Make�le). The headers get symlinked here during the build proess.sr/ = the soure ode, of ourse, made up o� the following trees (listed in build/dependeniesorder):plugin/ = the plugins sublib. Note that it omes before s11n in the dependeny hain.s11n/ = the ore library, inluding the lassloader/fatory API.io/ = ore i/o ode, several subdiretories (one for eah spei� Serializer lass), andshared utility ode for the Serializer build proess (e.g., reating the lexers).lite/ = s11nlite and friends.lient/ = lient-side ode.s11nonvert/ = utility to onvert between any two Serializers' formats.sample/ = lient-side demo/sample/test ode.The sr diretory is broken down the way it is mainly to enfore spei� dependenies between ertain partsof the framework. For example, the ore should never know about the i/o layer, and is thus built before the i/oparts (before the i/o headers are in plae), to enfore this dependeny. If someone aidentally adds #inlude<s11n.net/s11n/io/...> to a soure �le under sr/s11n, the next full build would fail to ompile (unless perhane the ompiler piks up an installed opy of the header from, e.g., the build's $prefix path).29.2 Header �le weirdnessAll header �les are stored in the same diretory as their soure �le (if any, otherwise the same diretoryas their sublibrary), but they are always referened in other �les using the fully-quali�ed form: #inlude<s11n.net/s11n/...>. This works beause the headers are symlinked into plae (under inlude/s11n.net/...)during the build proess. This serves the following purposes:
• Enfores that we annot build library A before library B if lib A depends on B, beause B's headers will notbe in plae (and therefor, presumably A will not ompile). This enforement only works on initial/leanbuilds, by the way.
• Establishes the same #inlude onvention that lient ode should use when inluding the projet headers.
• It gives maintainers more �exibility and simpli�es porting the tree to other platforms, as we an move thesoures and headers around without breaking any #inludes.
• While the soure tree might ontain �extra� headers, a oder an know whih ones are �o�ial� by lookingin the inlude tree (whih ontains only headers whih would get installed).While this might seem odd, i've been using this approah sine last millennium and it has always served mewell.We ould just as well store the physial headers under inlude/..., but in my experiene this makes editing theode more tedious. i prefer to have the headers and implementations in the same diretory, and the symlinkingprovides that �extra layer of indiretion� so that both approahes are aomodated simultaneously.i've worked on several projets whih split the soures and headers, and almost always �nd that oders inad-vertently inlude headers from modules whih ome after their own in the dependenies hain. While this doesnot unduly upset most people, it does unduly upset me (i'm a huge fan of proper dependenies). There is nosimple, straightforward way to �nd this type of problem in suh a tree, so i prefer to make in impossible for aoder to do, via the symlink approah.

120

29.3 Generated �lesThe build tree inludes the following generated �les, whih are normally reated during the on�gure proess.For porting purposes, they an be hand-reated or taken from a system with a generated opy and tweaked tosuit.
• sr/s11n/s11n_onfig.hpp: this is the library's main on�guration header, de�ning what features aresupported, shared paths, et. It is generated from the �le s11n_onfig.hpp.at.
• sr/plugin/plugin_onfig.hpp: this header is only needed on platforms where s11n_onfig.hpp:s11n_CONFIG_ENABLE_PLUGINSis set to a true value. It de�nes the plugin layer's options, suh as the default plugins searh path, and isgenerated from the �le plugin_onfig.hpp.at.
• Various �ex-generated lexers, sr/io/*/*.flex. The tree ships with pre-�exed versions, however. Infat, the �ex-generated versions won't even ompile as-is under newer C++ ompilers due to striterC++ standards ompliane in modern tools. The generated opies are haked a bit during the buildproess using Perl, but this is only known to work for lexers generated by �ex 2.5.4. While newer �exversions exist, Linux distributions ship with 2.5.4 sine years beause it at least generates ompilable Code (whereas newer ones often fail to do even that).29.4 PluginsPlatforms whih meet the following requirements an potentially work with s11n's plugins model:
• Must have the equivalent of dlopen(). That is, a funtion (probably with a C API) whih an open aDLL and link it into the running proess.
• It must be able to export symbols in a DLL into the appliation. On GNU platforms this is done using the-rdynami (or -export-dynami) �ag, and needs no speial ode support. On Windows platforms, all�appropriate� lasses must be expliitely exported. This is a real bummer, and i annot personally tell youwhih lasses need it and whih do not (beause my platform doesn't need this). The �le s11n/export.hppde�nes the S11N_EXPORT_API maro, whih is intended to be plaed in the delaration for lasses whihneed to be exported.
• When using Mirosoft(tm) ompilers (and maybe others), all DLLs built for this framework must be linkedwith the �keep unreferened data� option. This is essential for fatory registration to work. If this optionis not used, the build will work but no fatory registrations will happen - the end e�et is that we annotload new types via the fatory API.If your platform supports any of the following DLL loaders, the provided plugin implementations should beokay for use as-is on your system:
• dlopen() - the de fato Unix standard.
• lt_dlopen() - a GNU variant of dlopen(), ported to many platforms. This variant is hosen by theon�gure sript if it is found, taking preedene over dlopen().
• LoadModule() - the Win32 equivalent of dlopen().For supporting other loaders, see the �le sr/plugin/plugin.pp for how the platform-dependent ode ishandled.30 In Hindsight...�Don't you look at me that way!�Mom�Hindsight is always 20/20.�Common proverbThis setion is mainly a plae for me to blab about spei� elements of the library that i would like to hange,see hanged, or �would/should have done di�erently.� This is not a bug list, but might partially be onsideredan RFE (Request For Enhanements). 121

30.1 The name �Data Node�This was a huge mistake. When the templatized Node onept entered the API, i already had a type nameds11n_node (but not the same one we have today), and didn't want to use the onept name S11nNode beausei didn't want to give the impression thats s11n_node and S11nNode were the same thing. Let's halk up onepoint for Laziness. In hindsight, i should have thought more about it and hosen a ompletely di�erent name,like SerializationNode (SNode, for short). Ashamedly, that name never hit me until just now.The phrase �data node� is simply too vague, and often ambiguous (e.g., in the ontext of serializing a graph,where �node� is the onventional term for eah graph element).In the future i may well start to replae the term. The fat is, however, that this doument, the API dos, andthe web site, are all �lled with the phrase �data node�. The e�ort needed to ompletely update the dos wouldbe tremendous. i have reservations about �slowly� swithing terms, though, beause i don't want the di�erentterms to onfuse users.30.2 Patterns, formality, et.i think it's understandable that i never had any lue that this projet would grow to the size it has. It startedout life bak in 2001 as a set of utility ode whih i knew i would need in order to implement serialization.The library itself, as a formal entity, has evolved steadily, often rapidly, sine late 2003. Unfortunately, i havealways been so foused on playing with the ode that i have negleted some formalities whih would not onlymake users' lives easier, but would also help to improve the library. While i have been quite diligent aboutdoumentation, i haven't, until reently, begun to think of the library in terms of Patterns (see setion 4.7).This is probably a side-e�et of me being so buried in the implementation that i simply haven't stood bak longenough to see the various Patterns. i hope to be able to doument these more fully in the future, and perhapseven adjust some �non-Patterned� parts of the arhiteture where it seems that a partiular Pattern would workwell.The authors of the book C++ Template Metaprogramming [CTM2005℄, David Abrahams and Aleksey Gurtovoy,laim that types like s11n_traits<>, whih they desribe as �blobs�, are atualy �anti-patterns�, meaning �don'tdo that!� i feel that their position is well-justi�ed within the ontext of their Metatemplate Programming Library(MPL) work, but not in the general ase. The �blob� pattern does have its drawbaks, but also �lls numerousroles very niely.30.3 ExeptionsAs doumented elsewhere in this manual, the exeptions support in versions prior to 1.1.3 was ompletelybroken. To be fair, it wasn't designed to deal with exeptions until 1.1.0, and even then the handling odewas far from adequate. The lak of strong exeption guarantees was not a re�etion of my ignorane of whatexeptions are, but of my unertainty about how to best to aomodate for them in C++. My preoneptionsof exeptions stem from my Java years, but i am fully aware that exeptions in Java and C++ are di�erentbeasts, and fully aware that i don't know what all of those di�erene are. Knowing that there were lots ofpitfalls to exeption handling, i autiously avoided the topi for some time. This is rapidly being remedied inthe 1.1.3+ releases.The exeptions support would have been done a lot earlier if i had not delayed implementing the s11n::leanup_serializable()mehanism. The prototype for that was developed almost a full year before i inluded it in s11n. i was initiallyafraid that the additional overhead would add to the already-hurting lient-side ompile times. This fear turnsout to have been unjusti�ed - the impat is measurable but small. On one quik test it appeared to add about1/3rd of a seond to ompile times per input �le, though this number is atually dependent on the numberof registered Serializable types. The bene�t of that mehanism is immeasurable though, as it empowers manysafety guarantees this library ould not otherwise make. i personally don't mind paying 1/3rd of a seond forthe guaranty of no leak if an exeption is thrown.30.4 Build tree and ode layout onsistenyi know it's annoying that every 3rd release i move header �les around. The fat is, i'm a habitual tinkerer. As iuse the library in more lient ode, i hange the library to be more aomodating, or just learer or simpler touse.This isn't likely to hange.Sine the 1.0 release, the projet o�ially has �stable� and �development� soure trees, so i no longer feel guiltyabout this. Having the dev tree around keeps me from muking up the stable interfaes, as i undoubtedly wouldif i didn't have a seond branh of the soure tree to freely experiment with.122

31 Is this the end?"How far y'all going, she asked with a sigh. We're goin' all the way. Til the wheels fall o� andburn."Bob Dylan, Brownsville GirlWe are nearing the end of the doument, but hopefully the new possibilities for saving your data have justbegun. :)If you are looking for more information about using s11n, try:
• The s11n soure tree has ode for a ouple lient-side apps, whih will ertainly prove informative to thosestarting out with s11n: see sr/lient/sample
• The web site is updated fairly often, and you just might �nd something interesting over on there if youhek bak one in a while:http://s11n.net
• If you have questions, onerns, or just want to say �Hello, world�, please email us:s11n-devel�lists.soureforge.net.....Before i go, i want to tell you brie�y why i use s11n in all of my ode: beause it's just so damned easy todo. When there are suh time- and feature-gains to be had via suh a simple-to-integrate tool, it's hard tojustify re-implementing any save/load ode55. This ontinual interation with multiple lients also greatly helpsin �guring out exatly what s11n needs to do and what servies it must provide, so the library ontinuallyreshapes and improves under the well-proven and very-very-very long-standing rules of Natural Seletion, alsoknown as Darwinisti Proesses or, in the marketing department, Upgrades.As always:
• The soure tree is always the most-de�nitive soure of information, but the web site is also updated fairlyoften as new advanes are made, often a bit in advane of upoming hanges.
• i am always open to getting mails with questions about s11n, so don't hesitate to email our developmentlist. i will ask that you please browse the manual �rst, but i ertainly do not expet you to sour everyweb page or ode �le before posing a question. i understand that the doumentation has some gapingholes in it, and i will be happy to �ll those holes by answering your questions.
• The main goal of s11n is to Save Our Data! If s11n an't do that, please help us out by suggesting howwe might be able to hange it so that it an save your data! Sometimes just saying �s11n an't do [this℄�is enough to spur a solution, as often the author does not realize something is a problem or omission untilsomeone else points it out (thanks again to Ton and Gary, espeially, for that).One again: thanks a lot for taking the time to onsider adding s11n to your toolkit! And thanks a whole lotfor Reading The Full Manual. :)�� stephan�s11n.netor, of ourse:s5n�s11n.net:)Happy haking!!!

55You an bet your emas that i'm pretty sik of that part by now ;).123

Indexabstrat Serializable types, 109algorithm, de�nition, 24algorithms, ommonly used, 58algorithms, serialization, 56arhiteture, overview of, 24Base Types, 23, 53Base Types, abstrat, 109bool, as return type, 28bool, justifying, 28brute fore deserialization, 46bz2lib, 91asting Serializables, 44aveats, 14, 95lass_name(), 67lassloader, de�nition of, 23lassloader, role in s11n, 25loning Serializables, 90ommon problems, 107redits, 9yles, 95Data Node, de�nition of, 21Data Node, setting lass name, 31Data Nodes, lass names of, 30Data Nodes, property key requirements, 27deserialization, brute fore, 46deserialization, proess, 26deserialize, de�nition of, 22deserializing objets, 45Dislaimers, 7elem_t (sample Serializable), 50elem_t_s11n (sample proxy), 50features, primary, 12feedbak, providing, 8�le extensions, 60formats, data, 59funtor, de�nition, 24funtors, serialization, 56graphs, 95impl_lass(), 67indentation, Serializers and, 60Interfae, Default Serializable, 22interfaes, ooperating with remote, 32interfaes, ustom Serializable, 38Liense, 7magi ookies, 61Node Traits, 22node_traits, 22node_traits<>, 33nodes, �nding hildren, 43

ODR, 24One De�nition Rule, 24operator, deserialize, 22, 30, 48operator, serialize, 22, 30, 48Patterns, 29, 122problems, ommon, 107properties, error heking, 43properties, getting, 42properties, setting, 42proxies, 39, 56proxies, ommonly used, 58proxies, speifying funtors, 39proxy, list_serializer_proxy, 57proxy, map_serializer_proxy, 58proxy, pair_serializer_proxy, 58proxy, streamable_type_serialization_proxy, 57proxy, value_map_serializer_proxy, 58registration, lass names, 54registration, ustom Serializable interfaes, 54registration, default interfae, 54registration, proxies, 55registration, where to do it, 56s11n, meanings of, 21s11n_ast, 90s11n_ast(), 44S11N_DESERIALIZE_FUNCTOR, 40S11N_SERIALIZE_FUNCTOR, 40s11n_traits, 22s11n_traits<>, 34S11N_TYPE, 40S11N_TYPE_NAME, 40s11nonvert, 86s11nlite, 15s11nlite, role in s11n, 25SAM, 23, 73SAM, overview, 25Serializable interfae, onventions, 29Serializable Traits, 22Serializable type, reating, 38, 47Serializable, de�nition of, 22serializable, de�nition of, 22Serializables, abstrat, 109Serializables, asting, 44Serializables, reating, 37Serializables, working with, 42Serialization API Marshaling, 73serialization operators, templates as, 33serialization, proess, 26serialize, de�nition of, 22Serializer, ompat, 62Serializer, de�nition of, 22Serializer, expatxml, 62Serializer, funtxt, 63Serializer, funxml, 63Serializer, parens, 64124

Serializer, simplexml, 64Serializers, 59Serializers, onventions, 60Serializers, in s11nlite, 66Serializers, role in s11n, 25serializing objets, 45serializing Streamable Types, 44state, saving appliation-wide, 88Streamable Types, 43Streamable Types, de�nition of, 23Streamable Types, serializing, 44Streamables, 43Style Points, 24Supermaros, 52terms and de�nitions, 21thread safety, 96Traits, Serializable, 22type traits, 33walkthrough, reating a Serializable, 47zlib, 91

125

ReferenesReferenes[CTM2005℄ C++ Template Metaprogramming, by David Abrahams and Aleksey Gurtovoy.[CCS2005℄ C++ Coding Standards, by Herb Sutter and Andrei Alexandresu.[C++StandardLib℄ The C++ Standard Library (A Tutorial and Referene), by Niolai Josuttis. Without adoubt the single most-used C++ book i own.[E�etiveC++2℄ E�etive C++, 2nd Edition, by Sott Meyers.[E�etiveC++3℄ E�etive C++, 3rd Edition, by Sott Meyers.[MoreE�etiveC++℄ More E�etive C++, by Sott Meyers.[E�etiveSTL℄ E�etive STL, by Sott Meyers.[Gothas℄ C++ Gothas, by Stephen C. Dewhurst.

126

